50. Cauchy Problem for Degenerate Parabolic Equations

By Katsuju Igari
Department of Mathematics, Kyoto University
(Comm. by Kôsaku Yosida, m. J. A., April 12, 1973)

1. Introduction. We consider the Cauchy problem for the equation

$$
\begin{align*}
& \partial_{t} u-\sum_{j, k=1}^{n} \partial_{x_{j}}\left(a_{j k}(x, t) \partial_{x_{k}} u\right)-\sum_{j=1}^{n} b_{j}(x, t) \partial_{x_{j}} u-c(x, t) u \tag{1.1}\\
& \quad=\partial_{t} u-A u=f
\end{align*}
$$

(x, t) in $\boldsymbol{R}^{n} \times[0, \infty)$ with the initial-value

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \tag{1.2}
\end{equation*}
$$

where $a_{j_{k}}(x, t), b_{j}(x, t), c(x, t)$ are real-valued smooth functions. We assume that $\left(a_{j k}\right)_{1 \leq j \leq n, 1 \leq k \leq n}$ is symmetric and satisfies the condition: for any $(x, t) \in \boldsymbol{R}^{n} \times[0, \infty)$

$$
\begin{equation*}
\sum_{j, k=1}^{n} a_{j k}(x, t) \xi_{j} \xi_{k} \geq 0 \quad \text { for all } \xi \in \boldsymbol{R}^{n} \tag{1.3}
\end{equation*}
$$

O. A. Oleǐnik has treated this problem (see [3] and [4]). Her method consists of the following procedure (elliptic regularization): Instead of (1.1), the following equations (depending on a positive parameter ε) in $G=R^{n} \times[0, T]$

$$
\begin{equation*}
\partial_{t} u-\varepsilon \Delta u-A u=f \tag{1.4}
\end{equation*}
$$

are considered. Let u_{s} be the solution of (1.4) with the given initialvalue $u_{0}(x) \in L^{2}\left(\boldsymbol{R}^{n}\right)$ and $f(x, t) \in L^{2}(G)$. Then it is shown that $\left\{u_{s}(x, t)\right\}$ is bounded in $L^{2}(G)$. Then a weak limit of them, as $\varepsilon \rightarrow+0$, gives the desired solution $u(x, t) \in L^{2}(G)$. The uniqueness of the solution is proved. She also proved the smoothness of u, assuming the smoothness of u_{0} and f.

Contrary to the above point of view, we regard (1.1) as evolution equation. More precisely, we want to show the existence of the unique solution $u(x, t) \in \mathcal{E}_{t}^{0}\left(L^{2}\right) \cap \mathcal{E}_{t}^{1}\left(\mathscr{D}_{L^{2}}^{\prime 2}\right)$ of (1.1)-(1.2) for any $f(x, t) \in \mathcal{E}_{t}^{0}\left(L^{2}\right)$ and any initial-value $u_{0}(x) \in L^{2}$.*)

Our approach is based on the semi-group theory. Instead of elliptic regularization, we use Friedrichs' mollifier. Its property (see

[^0]Lemma) gives immediately the desired result (see Theorem 1). The smoothness can be obtained in the following form: when $u_{0}(x) \in \mathscr{D}_{L^{2}}^{m}$ and $f(x, t) \in \mathcal{E}_{t}^{0}\left(\mathscr{D}_{L^{2}}^{m}\right)$, the solution $u(x, t)$ belongs to $\in \mathcal{E}_{t}^{0}\left(\mathscr{D}_{L^{2}}^{m}\right) \cap \mathcal{E}_{t}^{1}\left(\mathscr{D}_{L^{2}}^{m-2}\right)$.

It seems to us that our method is more natural than the one relying on elliptic regularization and will be useful to other problems. A forthcoming paper will give the detailed proof including some other results.
2. Statement of results. Let $a_{j k}(x, t) \in \mathcal{E}_{t}^{0}\left(\mathcal{B}^{2}\right) ; b_{j}(x, t) \in \mathcal{E}_{t}^{0}\left(\mathcal{B}^{1}\right)$; $c(x, t) \in \mathcal{E}_{t}^{0}\left(\mathcal{B}^{0}\right)$. We assume the condition (1.3). Then we have the following theorem.

Theorem 1. For any initial-value $u_{0}(x) \in L^{2}$ and any $f(x, t) \in \mathcal{E}_{t}^{0}\left(L^{2}\right)$, there exists a unique solution $u(x, t) \in \mathcal{E}_{t}^{0}\left(L^{2}\right) \cap \mathcal{E}_{t}^{1}\left(\mathscr{D}_{L^{2}}^{\prime 2}\right)$ of the Cauchy problem (1.1)-(1.2).

To prove this, following propositions are essential. The first one is the energy inequality. The second one shows that Hille-Yosida's theorem is applicable.

Proposition 1. Let $f(x, t) \in \mathcal{E}_{t}^{0}\left(L^{2}\right)$ and $u(x, t) \in \mathcal{E}_{t}^{0}\left(L^{2}\right) \cap \mathcal{E}_{t}^{1}\left(\mathscr{D}_{L^{2}}^{\prime 2}\right)$ be the solution of (1.1). Then it holds for any $t(0 \leq t \leq T)$

$$
\begin{equation*}
\|u(t)\| \leq e^{r t}\|u(0)\|+\int_{0}^{t} e^{r(t-s)}\|f(s)\| d s \tag{2.1}
\end{equation*}
$$

where γ is a constant which may depend on T but does not depend on u and f.

Now we assume coefficients be functions of only x. Then we can obtain the following proposition.

Proposition 2. Take the domain of definition $\mathscr{D}(A)$ of A as follows:

$$
\begin{equation*}
\mathscr{D}(A)=\left\{u ; u \in L^{2}, A u \in L^{2}\right\} . \tag{2.2}
\end{equation*}
$$

Then, for large $\lambda,(\lambda-A)$ defines a one-to-one surjective mapping of $\mathscr{D}(A)$ onto L^{2}. Moreover there exists a constant β such that

$$
\begin{equation*}
\left\|(\lambda-A)^{-1}\right\|_{\mathcal{L}\left(L^{2}, L^{2}\right)} \leq \frac{1}{\lambda-\beta} \quad \text { for any } \lambda>\beta \tag{2.3}
\end{equation*}
$$

If we use the following lemma, these propositions can be proved in the same way as hyperbolic equation (see [2], $\S \S 2,4$ in Chapter 6).

Lemma. Let $\rho_{\varepsilon} *$ be Friedrichs' mollifier, where we assume $\rho(x)$ even function. Let $a(x) \in \mathscr{B}^{2}$ be real-valued function, and let $u(x) \in L^{2}$. Then it holds for any $\nu(|\nu| \leq 2)$

$$
\left|\operatorname{Re}\left(u_{s},\left[\rho_{s} *, a(x)\right] \partial_{x}^{\nu} u\right)\right| \leq C\|u\|,
$$

2) $\quad \operatorname{Re}\left(u_{s},\left[\rho_{s} *, a(x)\right] \partial_{x}^{\nu} u\right) \rightarrow 0 \quad$ as $\varepsilon \rightarrow+0$,
where u_{s} stands for $\rho_{\epsilon} * u,\left[\rho_{\varepsilon} *, a(x)\right] \partial_{x}^{\nu} u=\rho_{s} *\left\{a(x) \partial_{x}^{\nu} u\right\}-a(x) \rho_{\varepsilon} * \partial_{x}^{\nu} u$, and C is a constant independent of u and ε.

Proof of Lemma. Consider only the case of $|\nu|=2$, because, in the case of $|\nu| \leq 1,1)$ and 2) are clear by Friedrichs' lemma. We denote ∂_{x}^{ν} by $\partial_{j} \partial_{k}$. By Taylor expansion

$$
\begin{align*}
{\left[\rho_{s} *, a(x)\right] \partial_{j} \partial_{k} u=} & -\sum_{i=1}^{n} a^{(i)}(x)\left(x_{i} \rho_{s}\right) * \partial_{j} \partial_{k} u \\
& +\sum_{|\mu|=2} \frac{1}{\mu!} \int a_{\mu}(x, y)(x-y)^{\mu} \rho_{s}(x-y) \partial_{y_{j}} \partial_{y_{k}} u(y) d y \tag{2.4}
\end{align*}
$$

At first take the 1-st term of (2.4).

$$
\begin{align*}
& -2 \operatorname{Re}\left(u_{s}, a^{(i)}(x)\left(x_{i} \rho_{\mathrm{s}}\right) * \partial_{j} \partial_{k} u\right)=\left(a^{(i, j)}(x)\left(x_{i} \rho_{\mathrm{s}}\right) * \partial_{k} u, u_{s}\right) \\
& \quad+\left(u_{s},\left[\left(x_{i} \rho_{\mathrm{s}}\right) *, a^{(i)}(x)\right] \partial_{j} \partial_{k} u\right)+\left(u_{s},\left(x_{i} \rho_{\mathrm{s}}\right) *\left\{a^{(i, k)}(x) \partial_{j} u\right\}\right) \tag{2.5}\\
& \quad+\left(\left(x_{i} \rho_{\mathrm{s}}\right) * \partial_{k} u,\left[a^{(i)}(x), \rho_{\mathrm{s}} *\right] \partial_{j} u\right),
\end{align*}
$$

where we used the relations that $\left(\left(x_{i} \rho_{s}\right) * u, v\right)=-\left(u,\left(x_{i} \rho_{s}\right) * v\right)$ and that $\left(\rho_{e} * u, v\right)=\left(u, \rho_{c} * v\right)$. These all terms in the right-hand side of (2.5) can be majorized by

$$
\sum_{i, j=1}^{n}\|u\|\left\|\left(x_{i} \rho_{\mathrm{s}}\right) * \partial_{j} u\right\|+\sum_{|\nu| \leq 2} \sum_{i=1}^{n}\|u\|\left\|\left[a^{(i)}(x),\left(x_{i} \rho_{\mathrm{c}}\right) *\right] \partial_{x}^{\nu} u\right\| .
$$

In the same way as Friedrichs' lemma, we can show for $\nu(|\nu| \leq 2)$

$$
\begin{gathered}
\left\|\left(x_{i} \rho_{\mathrm{s}}\right) * \partial_{j} u\right\|,\left\|\left[a^{(i)}(x),\left(x_{i} \rho_{\mathrm{s}}\right) *\right] \partial_{x}^{\nu} u\right\| \leq \text { const. }\|u\|, \\
\left\|\left(x_{i} \rho_{\mathrm{s}}\right) * \partial_{j} u\right\|,\left\|\left[a^{(i)}(x),\left(x_{i} \rho_{\mathrm{s}}\right) *\right] \partial_{x}^{\nu} u\right\| \rightarrow 0 \quad \text { as } \varepsilon \rightarrow+0 .
\end{gathered}
$$

Next we consider the 2 -nd term of (2.4). Denote it by $R_{s} u$.

$$
\begin{align*}
R_{\epsilon} u & =\sum_{|\mu|=2} \frac{1}{\mu!} \int \partial_{y_{k}} \partial_{y_{j}}\left\{a_{\mu}(x, y)(x-y)^{\mu} \rho_{s}(x-y)\right\} u(y) d y \\
& =\sum_{|\mu|=2} \frac{1}{\mu!} \int \partial_{y_{k}} \partial_{y_{j}}\left\{a_{\mu}(x, y)(x-y)^{\mu} \rho_{s}(x-y)\right\}\{u(y)-u(x)\} d y . \tag{2.6}
\end{align*}
$$

If we note that $\sum_{|| | \leq \leq 2} \sum_{|\mu|=2} \int\left|\left(x^{\mu} \rho_{c}\right)^{(\nu)}(x)\right| d x<$ const. (independent of ε), the same reasoning as in the proof of Friedrichs’ lemma gives

$$
\begin{aligned}
& \left\|R_{\mathrm{s}} u\right\| \leq \text { const. }\|u\|, \\
& R_{s} u \rightarrow \infty \quad \text { as } \varepsilon \rightarrow \infty \text {. }
\end{aligned}
$$

Thus the proof is completed.
At the end we state the theorem concerning the smoothness of the solution. Let $a_{j k}(x, t) \in \mathcal{E}_{t}^{0}\left(\mathscr{B}^{m+2}\right) ; b_{j}(x, t) \in \mathcal{E}_{t}^{0}\left(\mathcal{B}^{m+1}\right) ; c(x, t) \in \mathcal{E}_{t}^{0}\left(\mathscr{B}^{m}\right)$, where $m=0,1,2, \cdots$. We assume the condition (1.3). Then we have the following theorem.

Theorem 2. For any initial-value $u_{0}(x) \in \mathscr{D}_{L^{2}}^{m}$ and any $f(x, t) \in \mathcal{E}_{t}^{0}\left(\mathscr{D}_{L^{2}}^{m}\right)$, there exists a unique solution $u(x, t) \in \mathcal{E}_{t}^{0}\left(\mathscr{D}_{L^{2}}^{m}\right) \cap \mathcal{E}_{t}^{1}\left(\mathscr{D}_{L^{2}}^{m-2}\right)$ of the Cauchy problem (1.1)-(1.2).

Acknowledgement. The author should like to express his sincere thanks to Professor S. Mizohata for many valuable comments and for the constant encouragement.

References

[1] K. O. Friedrichs: Symmetric hyperbolic system of linear differential equations. Comm. P. A. M., 7, 345-392 (1954).
[2] S. Mizohata: Theory of Partial Differential Equations. Iwanami, Tokyo (1965) (in Japanese; will appear in English from Camb. Univ. press).
[3] O. A. Oleǐnik: On the smoothness of the solutions of degenerate elliptic and parabolic equations. Sov. M. Dokl., 6, 972-976 (1965).
[4] -: Linear equations of second order with non-negative form. Mat. Sbornik, 69, 111-140 (1966) (in Russian). Amer. M. Soc. Translation, 167-199.

[^0]: *) Throughout this paper, we use the following notation: $x=\left(x_{1}, \cdots, x_{n}\right)$. ∂_{t} $=\partial / \partial t, \partial_{j}=\partial x_{j}=\partial / \partial x_{j}, \partial_{x}^{\nu}=\partial_{1}^{\nu_{1}} \cdots \partial_{n}^{\nu n}$, where $\nu=\left(\nu_{1}, \cdots, \nu_{n}\right) . L^{2}=L^{2}\left(\boldsymbol{R}^{n}\right) . u(x) \in \mathscr{D}_{L^{2}}^{m}$ means that its derivatives (in the sense of distribution) $\partial_{x}^{\nu} u$ up to order m belong to $L^{2} . \mathscr{D}_{L^{2}}^{\prime m}$ is the dual space of $\mathscr{D}_{L^{2}}^{m}$ and sometimes we denote it by $\mathscr{D}_{L^{2}}^{-m} . \varphi(x) \in \mathscr{G}^{m}$ means that its derivatives $\partial_{x}^{v} \varphi$ up to order m are continuous and bounded in \boldsymbol{R}^{n}. $f(t) \in \mathcal{E}_{t}^{k}\left(\mathscr{D}_{L^{2}}^{m}\left(\right.\right.$ or $\left.\mathscr{B}^{m}\right)$) means that $t \rightarrow t(t) \in \mathscr{D}_{L^{2}}^{m}\left(\right.$ or $\left.\mathscr{B}^{m}\right)$ is continuously differentiable up to order k.

