72. On Banach-Steinhaus Theorem

By Yasujirô NAGAKURA Science University of Tokyo (Comm. by Kinjirô KUNUGI, M. J. A., May 22, 1973)

The theory of ranked space is a new and constructive method of the mathematical analysis, which has been investigated by K. Kunugi since 1954 [1]. We proved the closed graph theorem in ranked spaces with some conditions [4]. And now, in this note we shall prove the Banach-Steinhaus theorem in ranked spaces, whose neighbourhoods need not be open. Throughout this note, g, f, \cdots will denote points of a ranked space, U_i, V_i, \cdots neighbourhoods of the origin with rank $i, \{U_{\tau_i}\}, \{V_{\tau_i}\}, \cdots$ fundamental sequences of neighbourhoods with respect to the origin and $U_i(g), V_i(g), \cdots$ neighbourhoods of the point g with rank i.

Let a linear space E be a complete ranked space with indicator ω_0 , which satisfies the following conditions.

- (E, 1) (1) For any neighbourhood U_i , the origin belongs to U_i .
 - (2) For any U_i and V_j , there is a W_k such that $W_k \subseteq U_i \cap V_j$.
 - (3) For any neighbourhood U_i and for any integer *n*, there is an *m* such that $m \ge n$ and $U_m \subseteq U_i$.
 - (4) The E is the neighbourhood of the origin with rank zero.
- (E,2) The following conditions are the modification of the Washihara's conditions [3].
 - (**R**, L₁) For any $\{U_{r_i}\}$ and $\{V_{r'_i}\}$, there is a $\{W_{r'_i}\}$ such that $U_{r_i} + V_{r'_i} \subseteq W_{r'_i}$.
 - (**R**, L₂)' (1) For any $\{U_{r_i}\}$ and $\lambda > 0$, there is a $\{V_{r_i}\}$ such that $\lambda U_{r_i} \subseteq V_{r_i'}$.

(2) For any $\{U_{r_i}\}$ and $\{\lambda_i\}$ with $\lim \lambda_i = 0$, $\lambda_i > 0$, there is a $\{V_{r_i}\}$ such that $\lambda_i U_{r_i} \subseteq V_{r_i'}$.

- (R, L₃) Let g be any point in E. For any $\{U_{r_i}\}$ there is a $\{V_{r'_i}(g)\}$, which is a fundamental sequence of neighbourhoods with respect to g, such that $g + U_{r_i} \subseteq V_{r'_i}(g)$ and conversely, for any $\{U_{r_i}(g)\}$ there is a $\{V_{r'_i}\}$ such that $U_{r'_i}(g) \subseteq g + V_{r'_i}$.
- (E, 3) For any neighbourhood U_i and for any r>0, there exists some U_j such that $rU_i \supset U_j$.
- (E, 4) For any neighbourhood $U_i(g)$ with respect to any g and for any $U_j(g)$ with $U_j(g) \subset U_i(g)$ and j > i, if $f \in U_j(g)$ there exists some neighbourhood U_k such that $f + U_k \subset U_i(g)$.

Next, let a linear space F be a ranked space with indicator ω_0 , which satisfies the following conditions.

- (F, 1) This is the same as (E, 1).
- (F, 2) This is the same as (E, 2).
- (F,3) For any neighbourhood U_i and for any $\{V_{\tau_i}\}$, there exists some integer i_0 such that $U_i \supset V_{\tau_i}$ if $j > i_0$.
- (F, 4) For any neighbourhood U_i and for any $\alpha > 0$, if g does not belong to αU_i , then there exist some $\varepsilon = \varepsilon(U_i)$ (with $0 < \varepsilon < 1$) and some neighbourhood V_j such that

$$\alpha(1-\varepsilon)U_i\cap (V_j+g)=\phi.$$

Now, we can prove the following theorem.

Theorem. Suppose E and F are the above-mentioned spaces. Let \mathfrak{T} be a family of continuous linear operators from E into F. If for any $g \in E$, there are some fundamental sequence of neighbourhoods $\{U_{r_i}\}$, and some $\beta_i > 0$ such that $\{Tg\}_{T \in \mathfrak{T}} \subset \beta_i U_{r_i}$ for all i, then for every U_j in F, there exist some neighbourhood V_i in E, some r > 0 and some point $f \in E$ such that $\{U_j \supset \{Tg\}_{T \in \mathfrak{T}}$ for $g \in rV_i + f$.

Proof. Assume the contrary and suppose that for a U_{j_0} and any $rV_i + f$ there exist some $g \in rV_i + f$ and some $T \in \mathfrak{T}$ such that $U_{j_0} \oplus Tg$.

Now, let V_1+f_1 be an arbitrary neighbourhood in E and α_1 be a real number such that $\alpha_1 > 1$. And suppose $V_{r'_i}+f_1$ is the neighbourhood such that $1 < \gamma_1 < \gamma'_1$ and $V_1 \supset V_{r_1} \supset V_{r'_1}$. Then there exist some g_1 belonging $(1/\alpha_1)(V_{r'_1}+f_1)$ and some $T_{n_1} \in \mathfrak{T}$ such that $T_{n_1}g_1 \in U_{j_0}$.

Hence we have $T_{n_1}\alpha_1g_1 \in \alpha_1U_{j_0}$ for $\alpha_1g_1 \in V_{r'_1} + f_1$. Following (F, 4), there exist a number $\varepsilon = \varepsilon(U_{j_0})$ with $0 < \varepsilon < 1$ and U_i such that

 $\alpha_1(1-\varepsilon)U_{j_0}\cap (T_{n_1}\alpha_1g_1+U_l)=\phi.$

On the other hand, since T_{n_1} is continuous, to U_i in F there corresponds a neighbourhood V_{r_2} in E such that

 $T_{n_1}g - T_{n_1}\alpha_1g_1 \in U_l \quad \text{if} \quad g - \alpha_1g_1 \in V_{\tau_2}.$ we have

Consequently we have

$$T_{n_1}g \in \alpha_1(1-\varepsilon)U_{j_0} \quad \text{for} \quad g \in \alpha_1g_1 + V_{\tau_2}.$$

By condition (E, 4) we can consider V_{r_e} with property that

$$\alpha_1 g_1 + V_{r_2} \subset f_1 + V_{r_1} \subset f_1 + V_1.$$

Next, let α_2 be a real number such that $\alpha_2 > 2$ and suppose $V_{r'_3} + \alpha_1 g_1$ is the neighbourhood such that $\gamma_2 < \gamma_3 < \gamma'_3$ and $V_{r_2} \supset V_{r'_3} \supset V_{r'_3}$.

Then there exist some g_2 belonging $(1/\alpha_2)(V_{r'_3} + \alpha_1 g_1)$ and some $T_{n_2} \in \mathfrak{X}$ such that $T_{n_2}g_2 \in U_{j_0}$. Hence we have $T_{n_2}\alpha_2g_2 \in \alpha_2U_{j_0}$ for $\alpha_2g_2 \in V_{r'_3}$ $+\alpha_1g_1$. Following (F, 4), there exist a number $\varepsilon = \varepsilon(U_{j_0})$ with $0 < \varepsilon < 1$ and $U_{l'}$ such that

$$\alpha_2(1-\varepsilon)U_{j_0}\cap (T_{n_2}\alpha_2g_2+U_{l'})=\phi.$$

On the other hand, since T_{n_2} is continuous, to $U_{\iota'}$ in F there corresponds a neighbourhood $V_{r_{\iota}}$ in E such that

Banach-Steinhaus Theorem

 $\begin{array}{rl} T_{n_2}g - T_{n_2}\alpha_2g_2 \in U_{l'} & \text{if} \quad g - \alpha_2g_2 \in V_{r_4}.\\ \text{Consequently we have } T_{n_3}g \in \alpha_2(1-\varepsilon)U_{j_0} \text{ for } g \in \alpha_2g_2 + V_{r_4}.\\ \text{By condition (E, 4) we can consider } V_{r_4} \text{ with property that}\\ \alpha_2g_2 + V_{r_4} \subset \alpha_1g_1 + V_{r_3} \subset \alpha_1g_1 + V_{r_2}. \end{array}$

Repeating the foregoing argument, we have

$$V_1 + f_1 \supset V_{r_1} + f_1 \supset V_{r_2} + \alpha_1 g_1 \supset V_{r_3} + \alpha_1 g_1 \supset V_{r_4} + \alpha_2 g_2 \supset V_{r_5} + \alpha_2 g_2 \supset \cdots$$

with $1 < \gamma_1 < \gamma_2 < \gamma_3 < \gamma_4 < \gamma_5 < \cdots$

and

$$T_{n_i}g \in \alpha_i(1-\varepsilon)U_{j_0}$$
 for $g \in \alpha_ig_i + V_{r_{n_i}}$.

Since the sequence $\{\alpha_i g_i\}$ is a Cauchy sequence, it has a limiting element $g_0 \in E$. Hence we have $g_0 \in \alpha_i g_i + V_{\tau_{\alpha_i}}$ for all *i*.

Consequently $T_{n_i}g_0 \in \alpha_i(1-\varepsilon)U_{j_0}$ for all *i*.

This is a contradiction to the hypotheses.

Corollary (Banach-Steinhaus theorem). Suppose E is the abovementioned space with the same property as (F, 3).

Let F be the above-mentioned space with the following additional properties.

- (F, 5) The neighbourhoods of the origin are symmetric (i.e. if $g \in U_i$, then $-g \in U_i$).
- (F, 6) For any $g \in F$ and any U_i , there exists some $\alpha > 0$ such that $g \in \alpha U_i$.
- (F,7) For any $\lambda > 0$, $\mu > 0$ and any U_i , we have $\lambda U_i + \mu U_i \subset (\lambda + \mu) U_i$.
- (F,8) For given distincts g_1 , g_2 , there exists some U_i such that $(g_1+U_i) \oplus g_2$.

And let $\{T_n\}_{n=1,2,...}$ be a sequence of continuous linear operators from E into F. If $Tg = \lim T_n g$ exists for any $g \in E$, then T is a continuous linear operator from E into F.

Proof. Let $\{U_{r_i}\}$ be an arbitrary fundamental sequence of neighbourhoods in F. By the foregoing theorem, for any $U_{r_i} \in \{U_{r_i}\}$ there exists some $r_i V_{r'_i} + f_i$ such that $T_n g \in U_{r_i}$ for all n if $g \in r_i V_{r'_i} + f_i$. On the other hand, since $\{T_n f_i\}_{n=1,2,\dots} \subset \alpha_i U_{r_i}$. Now, let $\{\delta_i\}$ be the sequence of real numbers such that $\delta_i > 0$, $\delta_i \downarrow 0$ and $\delta_i \alpha_i \downarrow 0$.

Suppose $g_j \rightarrow g_0$ in *E*, then for sufficiently large *N* and j > N, we have $g_j - g_0 \in \delta_i r_i V_{r_i}$. Hence we obtain

$$T_n\left(\frac{g_j-g_0}{\delta_i}+f_i\right)\in U_{r_i}, \quad \text{for all } n$$

and $T_n(g_j - g_0) + \delta_i T_n f_i \in \delta_i U_{r_i}$. Then we have

$$T(g_{j}-g_{0}) = (T-T_{n})(g_{j}-g_{0}) + T_{n}(g_{j}-g_{0}) + \delta_{i}T_{n}f_{i} - \delta_{i}T_{n}f_{i}$$

$$\in (T-T_{n})(g_{j}-g_{0}) + \delta_{i}U_{r_{i}} - \delta_{i}T_{n}f_{i}.$$

Since $\{T_n(g_j-g_0)\}_{n=1,2,\dots}$ converges, for sufficiently large N' and n > N' we have $(T-T_n)(g_j-g_0) \in U_{r_i}$.

Consequently we obtain

 $T(g_j - g_0) \in U_{\tau_i} + \delta_i U_{\tau_i} + \delta_i \alpha_i U_{\tau_i}, \quad \text{for } j > N.$

By the Washihara's conditions (R, L_2)' (2) and (R, L_1), there exists $\{W_{r_1''}\}$ such that $U_{r_1} + \delta_i U_{r_1} + \delta_i \alpha_i U_{r_2} \subset W_{r_1''}$, and $T(g_j - g_0) \in W_{r_1''}$.

Hence we assert that T is continuous.

We shall introduce a new axiom.

(E, 4)' Given any neighbourhood $U_i(g)$, there exists some $U_j(g)$ (with $U_j(g) \subset U_i(g)$ and j > i) so that for any $f \in U_j(g)$ we have some U_k such that $f + U_k \subset U_i(g)$.

Then we can prove the above-mentioned theorem and corrollary in the space E having (E, 4)' in place of (E, 4).

Acknowledgment. I wish to thank very much Prof. Kinjirô Kunugi for his valuable discussions and suggestions.

References

- [1] K. Kunugi: Sur les espaces complets et régulièrement complets. I. Proc. Japan Acad., 30, 553-556 (1954).
- [2] —: Sur la méthode des espaces rangés. I, II. Proc. Japan Acad., 42, 318-322, 549-554 (1966).
- [3] M. Washihara: On ranked spaces and linearity. II. Proc. Japan Acad., 45, 238-242 (1969).
- [4] Y. Nagakura: On closed graph theorem. Proc. Japan Acad., 48, 665-668 (1972).