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Eigenvalues of the Hamiltonian in a quantum field theory can be
considered as functions of the coupling constant. In the present paper,
the analyticity of these functions is studied by using simple models.

1. Introduction. The total Hamiltonian H is written in the form
H--H+gH’, where H is the free Hamiltonian and gH’ is the interac-
tion term. In the eigenvalue equation

HC Ec (1.1)
we call in question the analyticity of eigenvalues E which are functions
of g. For this purpose, we use three simple models, the first two of
them concern with the Lee model

V+__N0 (1.2)
and the third one is concerned with the reaction

8---VN. (1.3)
In the first case of reaction (1.2), all -particles have only one sort

of momentum (Case 1). The second one of (1.2) is the usual Lee model
(Case 2). In (1.3), 0-particles can have all sorts of momentum (Case
3). In these cases, the V- and N-particles have masses m and m,
respectively, and are fixed in space. The rest mass of the @-particle
is/. The use of symbols V, N and a for the annihilation operators
of V-, N- and 0-particles, respectively, is as usual [2]. In Case 1, symbol
a is used in stead of a. The commutation or anticommutation rela-
tions among operators V, N, a etc. are also as usual [2]. In most
cases, we assume the inequality mz m+/.

2. Case 1. We put H mvV*V+mvN*N/wa*a, and H’= V*Na
+N*Va*, where w is a positive real constant. Let u(0) and u(1) be
normalized eigenvectors of V’V, and u(0) and u(1) be those of N’N,
and let gO and be two dimensional unitary spaces spanned by these
sets of vectors, respectively. The infinite-dimensional Hilbert space
spanned by normalized eigenvectors of a*a is denoted by gO. Then our
bsis space is the direct product of three spaces ), ) and gO, i.e.,
(H)=@v(R)(R)g. States in which the number of fermions is equal
to one are written in the form- u(i)(R)u(])(R), (2.1)

i+j=l
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where ,’s are vectors in . We insert (2.1) into eq. (1.1) and multi-
ply u,(,)(R)u,(g) from the left on both of the sides. Then we obtain the
coupled equations

(E--m--oa*a)o gao, (E--m--oa*a)o=ga*o. (2.2)
We define operator G by the relation (E-m-wa*a)G=I, then we can
eliminate 0 from (2.2) as follows"

(E m--wa*a--gaGa*)o 0. (2.3)
The oparator in (2.3) becomes diagonal when we use the usual represen-
tation a=(+.,), and the n-th diagonal element, d say, is given by
d=E--m--(n-1)-gn/(E--m--). From equation d=0, we
obtain the eigenvalues E=(l2)(m+m)+(n- (1/2))w (1/2), n= 1,
2, 3, ..., where D--[w--(m--m)]+4gn. Conclusion for Case 1"
Each o eigenvalues has two branch points in the g-plane, and they
tend to zero as n tends to infinity. Hence, for a fixed value of g, we
obtain at most a finite number of eigenvalues of eq. (1.1), by the use of
perturbation method.. Case 2. We put H=mV*V+mN*N+ waa, and H’
=L-/ f()(2)-n(V*Na +N*Va), where=k +, and f()
is a real cut-off function. Basis space (H) has the same expression
as that given in 1 provided that is an incomplete direct product
space [1] of sequence {,}, i.e., = @, where is the Hilbert
space spanned by normalized eigenvectors ,), (k)=0, 1, 2,... of
aa,. Eigenvalues and eigenvectors of w,aa are respectively
given by E=(k)o and = ,r @,(), where notation fl e F
means that (k) is equal to zero except for a finite number of monenta
k. Sequence {} is a complete orthonormalized set of .

When we use the same expression as (2.1) for F, and follow the
same process as in 2, we arrive at the equation

where G is defined by the relation (N-m-)G=I, and
has the expression G=/(N--m--N). Oerator 0 has non-
diagonal elements and eq. (8.1) can be solved only artially as shown
below. We define =@,,. hen, among matrix elements,0), only ,, 0) is non-vanishing. Hence, some eigenvalues
are obtained from equation ,, 0,)=0, which can be written in the
form

g f(w)x += L 2w(w x)’ (3.2)

where x=E--m and =m-m. Eq. (3.2) is no other than the
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secular equation in the first sector of the Lee model [2]. When L tends
to infinity, eq. (3.2) becomes

X2V W P S;f2((.0) do, (3.3)

where P means the principal value, and 7--g2/(2w)2.
We examine the analyticity of x in the neighbourhood of w--0 in

cases of two simple cut-off functions f().
(1) f(w)--I in (0, tO) and ----0 in (2, c), and/--0. We notice that the
integral in (3.3) is continuous at/=0 for f(w) used here. In this case
eq. (3.3) is reduced to -x+(-wGo(x), where

G0(x) P o) do)= 9+x log 1.

Though the curve of G,() consists of three separate parts, the part
given in (0, D) is necessary for our purpose, since w 0. In this inter-
val the above equation becomes +--w(D+x log (o)/x-- 1)), and it is
written in the form w=F()=-/(9+(+)log (o)/(znt-8)--l)), where
=x--. The singular point ot F() whieh is nearest to =0, is at

= --, and the power seres F()=a+az+ is convergent in circle
C’II<R(<), and =1/(D+log(9/--1)). We put
then M R/D when/2 is sufficiently large. According to a theorem on
the inverse unction [3], the power series of the inverse unction of
w--F(z) has a radius of convergence not less than S defined by

S---laIR+2M--24’IaIRM+M. Since S0 for tO-.c, we can conclude
that the perturbation expansion o x in which is the zero-order appro-
ximation, converges when coupling constant g is sufficiently small.
The domain guaranteed for the convergence becomes narrow indefinit-
ly when 12 becomes large.

(2) f2((o)--e-P, p0 and /-0. The secular equation is given by

--x+=wG(x), where G(x)=P [, e-/(o-x)do=p--xe- Ei (px),

t and 0.577 is the Euler constant [4]Ei (t) .-t-log t-t-. /n n. .--
We put D (t)=e- Ei (t) and z=x--, and write the secular equation in
theform w=F(z)=--pz/(1--p(z+) D (p(z+6))). Then it is seen that
w tends to p when z tends to -, and the inverse function of w=F(z)
is not regular at w=p.

Proof. Suppose that z is regular at w=p3, put p(z+)=__ c
(w-p6) and insert it into the equation w-p=-p(z+3)(1--pD(p(z
+6)))/(1--p(z+6) D (p(z+6))) which is derived from w--F(z). Then
the identity 1-,7 c(w-p) D (, c(w--p))=-,7 c(w--P)n-
(1--p3 D (," c(w--p))) should hold valid. However, when w tends
to p6, the right hand side tends to infinity or zero according as c :/: 0 or
--0, respectively, while the left hand side always tends to unity for
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wp. Q.E.D.
Our conclusion is that the radius of convergence of the perturba-

tion expansion tends to zero as p tends to zero.
4. Case 3. To the reaction (1.3) correspond the Hamiltonians

H=m,V*V+mvN*N+k coka*a, H’=L-/ f()(2)-n(V*N*a
+NVa). When we use expression (2.1) for in eq. (1.1), we obtain
the coupled equations

(E-- aa)00: gL-/ f()(2)-/a, (4.1)

(E-mv--m-- waa)-gL-/ f(k)(Sk)-l/2ak+O0 (4.2}

In order to solve these equations, we define operator G by the relation
(E-waa)G=I. Then we can write G= +*/(E--E). By
using G, we obtain, from (4.1) and (4.2), the equation for

f(w)

When we ut N+m--N’ and m+2m=m’, eq. (4.) becomes

=0, which has same form as (.1), and G is expressed as
=o*/(N’-m-N). In this way, we arrive at the same equa-
tion as (.), where z=N=N’-m, =m+m=m/--m, -=’
m/=N--m-m. Aeeordingly, we get the same conclusions as in

sect. .
5. Conclusion. In eigenvalue equation (1.1), we have examined

the analytieiy of eigenvalues in the neighbourhood of =0, regarding
them as functions of coupling constant . As simle models, we take
hree Cases 1, 2 and given in the introduction. In Case 1, the prob-
lem can be solved completely, and our result is" Nvery eigenvalue has
two branch points, and they as a whole accumulate at g=0. In Cases
2 and , the roblem can be solved artially. Instead of the usual
method, we use the method of Green’s function and arrive at the same
secular euation as that derived in the first sector of the Lee model.
he roo of this seeular equation which tends to an unperturbed eigen-

value as tends to ero, can be expanded in a power series
radius of eonvergenee of this series tends to ero as the cut-off func-
tion f() tends to unity. his circumstance may have some connec-
tions with the aearanee of ghos states in the Lee model, because
occurs when f() tends to unity.
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