69. Further Results for the Solutions of Certain Third Order Non-autonomous Differential Equations

By Minoru Yamamoto
Osaka University

(Comm. by Kenjiro Shoda, m. J. A., May 22, 1973)

1. Introduction. The differential equations considered here are

$$
\begin{align*}
& \dddot{x}+\psi(t, x, \dot{x}, \ddot{x})+\phi(t, x, \dot{x})+c(t) f(x)=p(t, x, \dot{x}, \ddot{x}) \tag{1.1}\\
& \dddot{x}+\psi(t, x, \dot{x}, \ddot{x})+\phi(t, x, \dot{x})+c(t) f(x)=0
\end{align*}
$$

where ψ, ϕ, c, f and p are real valued functions. All solutions of (1.1) considered here are assumed real.

In [4] M. Harrow considered the behavior as $t \rightarrow \infty$ of solutions of the differential equation

$$
\begin{equation*}
\ddot{x}+f(x, \dot{x}, \ddot{x}) \ddot{x}+g(x, \dot{x})+h(x)=p(t) . \tag{1.3}
\end{equation*}
$$

In [6] H. O. Tejumola considered the behavior as $t \rightarrow \infty$ of solutions of the differential equation

$$
\begin{equation*}
\dddot{x}+f(t, \dot{x}, \ddot{x}) \ddot{x}+g(x, \dot{x})+h(x)=p(t, x, \dot{x}, \ddot{x}) . \tag{1.4}
\end{equation*}
$$

Recently, in [3] T. Hara obtained some conditions under which all solutions of the equation

$$
\begin{equation*}
\ddot{x}+a(t) f(x, \dot{x}, \ddot{x}) \ddot{x}+b(t) g(x, \dot{x})+c(t) h(x)=p(t, x, \dot{x}, \ddot{x}) \tag{1.5}
\end{equation*}
$$

tend to zero as $t \rightarrow \infty$.
In [7], the author established conditions under which all solutions of the non-autonomous equation (1.1) tend to zero as $t \rightarrow \infty$.

In this note we investigate the asymptotic behavior of the solutions of the equation (1.1) under the condition weaker than that obtained in [3], [4], [6].

Many results have been obtained on the asymptotic properties of autonomous equations of third order and many of these results are summarized in [5].
2. Assumptions and Theorems. We shall state the assumptions on the functions ψ, ϕ, f, c and p appeared in the equation (1.1).

Assumptions.

(I) $f(x)$ is a C^{1}-function in R^{1}, and $c(t)$ is a C^{1}-function in $I=[0, \infty)$.
(II) The function $\phi(t, x, y)$ is continuous in $I \times R^{2}$, and for the function $\phi(t, x, y)$ there exist functions $b(t), \phi_{0}(x, y)$ and $\phi_{1}(x, y)$ which satisfy the inequality $b(t) \phi_{0}(x, y) \leqq \phi(t, x, y) \leqq b(t) \phi_{1}(x, y) \quad$ in $I \times R^{2}$. Moreover $b(t)$ is a C^{1}-function in I.

Let $\tilde{\phi}(x, y) \equiv \frac{1}{2}\left\{\phi_{0}(x, y)+\phi_{1}(x, y)\right\}, \tilde{\phi}(x, y)$ and $\frac{\partial \tilde{\phi}}{\partial x}(x, y)$ are continuous in R^{2}.
(III) The function $\psi(t, x, y, z)$ is continuous in $I \times R^{3}$, and for the function $\psi(t, x, y, z)$ there exist functions $a(t), \psi_{0}(x, y, z)$ and $\psi_{1}(x, y, z)$ which satisfy
$a(t) \psi_{0}(x, y, z) \leqq \frac{1}{z} \psi(t, x, y, z) \leqq \alpha(t) \psi_{1}(x, y, z) \quad$ in $I \times R^{3}$.
Further $a(t)$ is a C^{1}-function in I, and let
$\tilde{\psi}(x, y, z) \equiv \frac{1}{2}\left\{\psi_{0}(x, y, z)+\psi_{1}(x, y, z)\right\}$,
$\tilde{\psi}(x, y, z), \frac{\partial \tilde{\psi}}{\partial x}(x, y, z)$ and $\frac{\partial \tilde{\psi}}{\partial z}(x, y, z)$ are continuous in R^{3}.
Theorem 1. Suppose that the assumptions (I), (II) and (III) hold, and that these functions satisfy the following conditions:
(1) $0<f_{0} \leqq \frac{f(x)}{x} \quad(x \neq 0), \quad f^{\prime}(x) \leqq f_{1} \quad$ in R^{1}.
(2) $0<\phi_{0} \leqq \frac{\tilde{\phi}(x, y)}{y} \leqq \phi_{1} \quad(y \neq 0), \quad \tilde{\phi}_{x}(x, y) \leqq 0 \quad$ in R^{2}.
(3) $0<\psi_{0} \leqq \tilde{\psi}(x, y, z) \leqq \psi_{1}, \quad \tilde{\psi}_{x}(x, y, z) y \leqq 0 \quad$ and $y \tilde{\psi}_{z}(x, y, z) \geqq 0 \quad$ in R^{3}.
(4) $0<c_{0} \leqq c(t) \leqq c_{1}, \quad 0<b_{0} \leqq b(t) \leqq b_{1}, \quad 0<a_{0} \leqq a(t) \leqq a_{1} \quad$ in I.
(5) $\sup _{y \neq 0} \frac{1}{y}\left\{\phi_{1}(x, y)-\phi_{0}(x, y)\right\}=p<+\infty$,
$\sup \left\{\psi_{1}(x, y, z)-\psi_{0}(x, y, z)\right\}=q<+\infty$.
(6) $a_{0} b_{0} \phi_{0} \psi_{0}>c_{1} f_{1}$.
(7) $\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left\{\left|a^{\prime}(s)\right|+\left|b^{\prime}(s)\right|+\left|c^{\prime}(s)\right|\right\} d s$ has an infinitesimal upper bound.
(8) $|p(t, x, y, z)| \leqq p_{1}(t)+p_{2}(t) \cdot\left(x^{2}+y^{2}+z^{2}\right)^{\alpha / 2}+\Delta \cdot\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ where α and Δ are constants such that $0 \leqq \alpha<1$ and $\Delta \geqq 0$, and $p_{1}(t), p_{2}(t)$ are non-negative, continuous functions defined in $I=[0,+\infty)$.
(9) For a positive number ω, and for some $T>0$,
$\int_{T}^{t} e^{-\omega(t-s)}\left\{p_{1}(s)\right\}^{r} d s \rightarrow 0 \quad$ as $t \rightarrow \infty \quad(1 \leqq r \leqq 2)$,
$\int_{T}^{t} e^{-\omega(t-s)}\left\{p_{2}(s)\right\}^{(r / 1-\alpha)} d s \rightarrow 0 \quad$ as $t \rightarrow \infty \quad(1 \leqq r \leqq 2)$,
If Δ is sufficiently small and if

$$
\left\{\begin{array}{l}
a_{0} \psi_{0}-\mu_{1}-\left(2 a_{1} \psi_{0}+2 \mu_{1}+3 a_{1}\right) q-2 b_{1} p>0 \\
\mu_{1} b_{0} \phi_{0}-c_{1} f_{1}-2 \mu_{1}\left(a_{1} q+b_{1} p\right)>0 \\
a_{0} \psi_{0}\left(b_{0} \phi_{0}-\mu_{2}\right)-c_{1} f_{1}-a_{1} \psi_{0}\left(a_{1} q+b_{1} p\right)>0
\end{array}\right.
$$

$$
\left\{\begin{aligned}
c_{0} f_{0}-\frac{\mu_{2}}{4}\left\{a_{1}\left(\psi_{1}-\psi_{0}\right)-\frac{b_{1}}{\mu_{1}}(\right. & \left.\left.\phi_{1}-\phi_{0}\right)\right\} \\
& -\frac{\mu_{2}\left(H 2 \mu_{2}\right)}{4 \mu_{1}}\left(a_{1} \mu_{1} q+b_{1} p\right)>0
\end{aligned}\right.
$$

where μ_{1} and μ_{2} are arbitrarily fixed constants satisfying

$$
a_{0} \psi_{0}>\mu_{1}>\frac{c_{1} f_{1}}{b_{0} \phi_{0}}, \quad \frac{a_{0} b_{0} \phi_{0} \psi_{0}-c_{1} f_{1}}{a_{0} \psi_{0}}>\mu_{2}>0
$$

then every solution of (1.1) is uniform-bounded and satisfies

$$
\begin{equation*}
\{x(t)\}^{2}+\{\dot{x}(t)\}^{2}+\{\ddot{x}(t)\}^{2} \rightarrow 0 \quad \text { as } t \rightarrow \infty . \tag{2.1}
\end{equation*}
$$

Theorem 2. Suppose that the assumptions (I), (II) and (III), and the conditions (1)-(7), (10) of Theorem 1 hold, then the zero solution of (1.2) is asymptotically stable in the large as $t \rightarrow \infty$, if $\phi(t, x, 0)=0$ in $I \times R^{1}$.

Remark. The condition (9) is weaker than the diminishing condition:

$$
\int_{t}^{t+1}\left\{p_{1}(t)\right\}^{r} d s \rightarrow 0, \quad \int_{t}^{t+1}\left\{p_{2}(t)\right\}^{(r / 1-\alpha)} d s \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

(see F. Brauer and J. A. Nohel [1]).
3. Proof of Theorems. We require first the following

Lemma 1. Consider the system of differential equations

$$
\begin{equation*}
\dot{x}=f(t, x), \quad f(t, x) \in C\left[I \times R^{n}\right] . \tag{3.1}
\end{equation*}
$$

If there exists a Liapunov function $U(t, x)$ satisfying
i) $U(t, x) \in C^{1}\left[I \times R^{n}\right]$,
ii) $a(\|x\|) \leqq U(t, x) \leqq b(\|x\|) \quad$ where $a(r), b(r) \in C I P$
(the family of continuous increasing positive definite functions) and $\alpha(r) \rightarrow \infty$ as $r \rightarrow \infty$,
iii) $\dot{U} \leqq\left(-\lambda+\lambda_{1}(t)\right) U+\lambda_{2}(t) U^{\mu / 2} \quad(0 \leqq \mu<2) \quad$ where $\lambda_{i}(t) \in C[I]$ and
(1) $\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \lambda_{1}(s) d s=\lambda_{0}<\lambda$,
(2) $e^{-\omega t} \int_{T}^{t} e^{\omega s} \lambda_{2}(s) d s \rightarrow 0 \quad$ as $t \rightarrow \infty \quad$ for some $\omega>0$
and for some $T>0$,
then, all solutions $x(t)$ of (3.1) are uniform-bounded and satisfy $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

Proof of Lemma 1. Let

$$
V(t, x)=U(t, x) e^{-s t} \int_{t}^{\infty} e^{s s} \exp \left(-\lambda(s-t)+\int_{t}^{s} \lambda_{1}(\tau) d \tau\right) d s
$$

Then for some positive constant K

$$
e^{2} \cdot U(t, x) \leqq V(t, x) \leqq e^{K} \cdot U(t, x) \quad \text { in } I \times R^{n},
$$

and

$$
\frac{d V(t, x(t))}{d t} \leqq-\varepsilon V(t, x(t))+\lambda_{2}(t) K^{\mu / 2} \cdot V^{\mu / 2}(t, x(t)) \quad \text { in } I \times R^{n}
$$

where ε is a constant such that for some $T^{\prime}>T$

$$
\lambda-\frac{1}{t-T} \int_{T}^{t} \lambda_{2}(s) d s \geqq 2 \varepsilon \quad \text { for all } t \geqq T^{\prime}
$$

Thus, let $W=V^{1-(\mu / 2)}$, we have for all $t \geqq T^{\prime}$

$$
W\left(t, T, W_{0}\right) \leqq W_{0} e^{-(2 / 2-\mu) \delta(t-T)}+\int_{T}^{t} e^{-(2 / 2-\mu) \delta(t-s)} \lambda_{2}(s) d s
$$

and $W(t, x(t))$ is bounded and tends to zero as $t \rightarrow \infty$. Therefore all solutions $x(t)$ of (3.1) are uniform-bounded and satisfy $x(t) \rightarrow 0$ as $t \rightarrow \infty$.
Q.E.D.

Proof of Theorem 1. First we note that the equation (1.1) is equivalent to the following system of differential equations:
(3.2) $\dot{x}=y, \dot{y}=z, \dot{z}=p(t, x, y, z)-c(t) f(x)-\phi(t, x, y)-\psi(t, x, y, z)$.

We consider now the Liapunov function

$$
U(t, x, y, z)=U_{1}(t, x, y, z)+U_{2}(t, x, y, z)+U_{3}(t, x, y, z)
$$

where

$$
\begin{align*}
& 2 U_{1}(t, x, y, z)= 2 \mu_{1} c(t) \int_{0}^{x} f(\xi) d \xi+2 c(t) f(x) y+2 b(t) \int_{0}^{y} \tilde{\phi}(x, \eta) d \eta \\
&+2 \mu_{1} a(t) \int_{0}^{y} \tilde{\psi}(x, \eta, 0) \eta d \eta+2 \mu_{1} y z+z^{2}, \tag{3.3}\\
& 2 U_{2}(t, x, y, z)= \mu_{2} b(t) \phi_{0} x^{2}+2 a(t) c(t) \psi_{0} \int_{0}^{x} f(\xi) d \xi+a^{2}(t) \psi_{0}^{2} y^{2} \\
&-\mu_{2} y^{2}+2 b(t) \int_{0}^{y} \tilde{\phi}(x, \eta) d \eta+z^{2}+2 \mu_{2} a(t) \psi_{0} x y \\
&+2 \mu_{2} x z+2 a(t) \psi_{0} y z+2 c(t) f(x) y, \\
& 2 U_{3}(t, x, y, z)=2 a^{2}(t) \psi_{0} \int_{0}^{y} \tilde{\psi}(x, \eta, 0) \eta d \eta-a^{2}(t) \psi_{0}^{2} y^{2} .
\end{align*}
$$

The inequality

$$
\begin{aligned}
2 U_{1}= & 2 c(t) \int_{0}^{x}\left(\mu_{1}-\lambda f^{\prime}(\xi)\right)^{2} f(\xi) d \xi+2 c(t)\left\{\sqrt{\lambda} f(x)+\frac{y}{\sqrt{\lambda}}\right\}^{2} \\
& +\left(\mu_{1} y+z\right)^{2}+\frac{2}{\lambda} \int_{0}^{y}(\lambda b(t) \tilde{\phi}(x, \eta)-c(t) \eta) d \eta \\
& +2 \mu_{1} \int_{0}^{y}\left\{a(t) \tilde{\psi}(x, \eta, 0)-\mu_{1}\right\} \eta d \eta \\
\geqq & c_{0}\left(\mu_{1}-\lambda f_{1}\right) f_{0} x^{2}+\sigma z^{2}+\left\{\frac{1}{\lambda}\left(\lambda b_{0} \phi_{0}-c_{1}\right)+\mu_{1}\left(a_{0} \psi_{0}-\frac{\mu_{1}}{1-\sigma}\right)\right\} y^{2}
\end{aligned}
$$

implies that there exists a constant δ_{0} such that

$$
\delta_{0} \cdot\left(x^{2}+y^{2}+z^{2}\right) \leqq U_{1}(t, x, y, z), \quad \text { if } \quad a_{0} \psi_{0}(1-\sigma)>\mu_{1} \quad \text { and } \quad \mu_{1}>\lambda f_{1}>\frac{c_{1} f_{1}}{b_{0} \phi_{0}} .
$$

The existence of δ_{1} such that $U_{1}(t, x, y, z) \leqq \delta_{1} \cdot\left(x^{2}+y^{2}+z^{2}\right)$ is obvious. Next we have

$$
2 U_{2} \geqq \mu_{2}\left(b_{0} \phi_{0}-\mu_{2}\right) x^{2}+\frac{a_{0} b_{0} \phi_{0} \psi_{0}-a_{0} \psi_{0} \mu_{2}-c_{1} f_{1}}{a_{0} \psi_{0}} \cdot y^{2},
$$

and by the conditions there exist constants δ_{2}, δ_{3} satisfying

$$
\delta_{2} \cdot\left(x^{2}+y^{2}\right) \leqq U_{2}(t, x, y, z) \leqq \delta_{3}\left(x^{2}+y^{2}+z^{2}\right)
$$

By the same argument we have for some $\delta_{4}>0$,

$$
0 \leqq U_{3}(t, x, y, z) \leqq \delta_{4} \cdot\left(x^{2}+y^{2}+z^{2}\right)
$$

Thus we have

$$
\begin{equation*}
\delta_{0} \cdot\left(x^{2}+y^{2}+z^{2}\right) \leqq U(t, x, y, z) \leqq \delta_{5} \cdot\left(x^{2}+y^{2}+z^{2}\right) \tag{3.6}
\end{equation*}
$$

for some positive constants δ_{0} and δ_{5}.
Next along the solution of (3.2),

$$
\begin{aligned}
\dot{U}_{(3.2)} \leqq & -\left[\mu_{2} c(t) x f(x)+\left\{\psi(t, x, y, z)-\mu_{1} z\right\} z\right. \\
& +\left\{\psi(t, x, y, z)-a(t) \psi_{0} z\right\} z+\left\{\mu_{1} \phi(t, x, y)-c(t) f^{\prime}(x) y\right\} y \\
& +\left\{a(t) \psi_{0} \phi(t, x, y)-c(t) f^{\prime}(x) y-\mu_{2} a(t) \psi_{0} y\right\} y \\
& +\mu_{2}\left\{\phi(t, x, y)-b(t) \phi_{0} y\right\} x+\mu_{1}\{\psi(t, x, y, z)-a(t) \tilde{\psi}(x, y, 0) z\} y \\
& +\mu_{2}\left\{\psi(t, x, y, z)-a(t) \psi_{0} z\right\} x+a(t) \psi_{0}\left\{\psi(t, x, y, z)-a(t) \psi_{0} z\right\} y \\
& \left.+2\{\phi(t, x, y)-b(t) \tilde{\phi}(x, y)\} z+a^{2}(t) \psi_{0}\left\{\tilde{\psi}(x, y, 0)-\psi_{0}\right\} y z\right] \\
& +D_{1} \cdot\left\{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}|p(t, x, y, z)|\right. \\
& +D_{2} \cdot\left\{\left|a^{\prime}(t)\right|+\left|b^{\prime}(t)\right|+\left|c^{\prime}(t)\right|\right\}\left(x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

for some positive constants D_{1} and D_{2}.
Therefore by the inequality (3.6) and condition (10), we obtain the following estimate for some positive constant $\delta_{6}, \delta_{7}, \delta_{8}$:

$$
\dot{U}_{(3.2)}=-\left[\delta_{6}-\delta_{7}\left\{\left|\alpha^{\prime}(t)\right|+\left|b^{\prime}(t)\right|+\left|c^{\prime}(t)\right|\right\}\right] U+\delta_{8}|p(t, x, y, z)| \cdot U^{1 / 2} .
$$

Thus we have

$$
\begin{aligned}
\dot{U}_{(3.2)} \leqq & -\left\{\delta_{6}-\delta_{7}\left(\left|a^{\prime}(t)\right|+\left|b^{\prime}(t)\right|+\left|c^{\prime}(t)\right|\right)\right\} U+\delta_{8} \cdot p_{1}(t) U^{1 / 2} \\
& +\delta_{9} p_{2}(t) U^{(1+\alpha) / 2}+\delta_{10} \cdot \Delta \cdot U \\
\leqq & \left\{-\delta_{8}+\delta_{10} \cdot \Delta+\varepsilon+\delta_{7}\left(\left|\alpha^{\prime}(t)\right|+\left|b^{\prime}(t)\right|+\left|c^{\prime}(t)\right|\right)\right\} U \\
& +\delta_{8}\left\{p_{1}(t)-\frac{\varepsilon}{2 \delta_{8}} U^{1 / 2}\right) U^{1 / 2}+\delta_{9}\left\{p_{2}(t)-\frac{\varepsilon}{2 \delta_{9}} U^{(1+\alpha) / 2}\right\} U^{(1+\alpha) / 2}
\end{aligned}
$$

and

$$
\begin{align*}
\dot{U}_{(3.2)} \leqq & \left\{-\delta_{6}+\delta_{10} \cdot \Delta+\varepsilon+\delta_{7}\left(\left|a^{\prime}(t)\right|+\left|b^{\prime}(t)\right|+\left|c^{\prime}(t)\right|\right)\right\} U \tag{3.7}\\
& +\delta_{11} \cdot U^{\mu / 2}\left\{p_{1}(t)\right\}^{2-\mu}+\delta_{12} U^{\mu / 2}\left\{p_{2}(t)\right\}^{(2-\mu) /(1-\alpha)}
\end{align*}
$$

where $0 \leqq \mu \leqq 1,0 \leqq \alpha<1, \varepsilon>0$ such that $\delta_{6}-\delta_{10} \cdot \Delta-\delta_{7} \cdot \lambda_{0}-2 \varepsilon>0$, where

$$
\lambda_{0}=\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left(\left|\alpha^{\prime}(s)\right|+\left|b^{\prime}(s)\right|+\left|c^{\prime}(s)\right|\right) d s .
$$

The Lemma 1 will be used to complete the proof of Theorem 1. Q.E.D.
Theorem 2 is an immediate consequence of Theorem 1.

References

[1] F. Brauer and J. A. Nohel: Qualitative Theory of Ordinary Differential Equations. Benjamin (1969).
[2] J. O. C. Ezeilo: Stability results for the solutions of some third order and fourth order differential equations. Ann. Math. Pura. Appl., 66, 233-249 (1964).
[3] T. Hara: On the asymptotic behavior of solutions of certain non-autonomous differential equations (to be published).
[4] M. Harrow: Further results for the solution of certain third order differential equations. J. London Math. Soc., 43, 587-592 (1968).
[5] R. Reissig, G. Sansone, und R. Conti: Nichtlineare Differentialgleichungen Höherer Ordnung. Roma (1969).
[6] H. O. Tejumola: A note on the boundedness and the stability of solutions of certain third-order differential equations. Ann. Math. Pura. Appl., 92, 65-75 (1972).
[7] M. Yamamoto: Remarks on the asymptotic behavior of the solutions of certain third order non-autonomous differential equations. Proc. Japan Acad., 47, 915-920 (1971).

