99. On Expandability

By Yûkiti KATUTA

(Comm. by Kenjiro SHODA, M. J. A., June 12, 1973)

In [1] Katětov proved the following useful theorem:

A normal space X is collectionwise normal and countably paracompact if and only if

(*) for every locally finite collection $\{F_{\lambda} | \lambda \in A\}$ of subsets of X there exists a locally finite collection $\{G_{\lambda} | \lambda \in A\}$ of open subsets of X such that $F_{\lambda} \subset G_{\lambda}$ for every $\lambda \in A$.

Recently, Krajewski [3] has called a topological space X expandable if X satisfies this condition (*). Smith and Krajewski [4] have introduced some generalizations (almost expandability, etc.) of expandability, and they have obtained various results concerning these notions.

In this paper, we shall introduce new notions of θ -expandability, subexpandability etc., and obtain analogous results. Furthermore, we shall study additional properties of expandable spaces, θ -expandable spaces etc.

The proofs and details of the results will be published elsewhere.

1. A collection \mathfrak{A} of subsets of a space X is said to be bounded locally finite [2], if there exists a positive integer n such that every point of X has a neighborhood which intersects at most n elements of \mathfrak{A} . Every discrete collection is bounded locally finite and every bounded locally finite collection is locally finite.

A space X is said to be θ -expandable (resp. boundedly θ -expandable or discretely θ -expandable), if for every locally finite (resp. bounded locally finite or discrete) collection $\{F_{\lambda} | \lambda \in \Lambda\}$ of subsets of X there exists a sequence $\mathfrak{G}_{n} = \{G_{\lambda,n} | \lambda \in \Lambda\}, n = 1, 2, \cdots$, of collections of open subsets of X satisfying the following two conditions:

(1) $F_{\lambda} \subset G_{\lambda,n}$ for each $\lambda \in \Lambda$ and each n.

(2) For each point x of X there exists a positive integer n such that only finitely many elements of \mathfrak{G}_n contain x.

Theorem 1.1. (a) X is boundedly θ -expandable if and only if X is discretely θ -expandable.

(b) X is θ -expandable if and only if X is discretely θ -expandable and countably θ -refinable.

(c) A θ -refinable space is θ -expandable.

A space X is said to be discretely subexpandable, if for every discrete collection $\{F_{\lambda} | \lambda \in \Lambda\}$ of subsets of X there exists a sequence

No. 6]

Expandability

 $\mathfrak{G}_n = \{G_{\lambda,n} | \lambda \in \Lambda\}, n = 1, 2, \dots, \text{ of collections of open subsets of } X \text{ satis-fying the following two conditions:}$

(3) $F_{\lambda} \subset G_{\lambda,n}$ for each $\lambda \in \Lambda$ and for each n.

(4) For each point x of X there exists a positive integer n such that at most one element of \mathfrak{G}_n contains x.

A discretely subexpandable space X is said to be *subexpandable* (resp. *boundedly subexpandable*), if it is countably subparacompact (resp. finitely subparacompact¹⁾).

Theorem 1.2. (a) A subparacompact space is subexpandable.

(b) A space whose every closed subset is a $G_{\mathfrak{d}}$ -subset is subexpandable.

(c) A collectionwise normal space is boundedly subexpandable.

2. An open covering of a space is said to be an A-covering [2], if it has a locally finite (not necessarily open) refinement. Every countable open covering is an A-covering. A covering \mathfrak{U} is said to be *directed* [5], if for every pair (U, V) of elements of \mathfrak{U} there exists an element Wof \mathfrak{U} such that $U \cup V \subset W$.

Theorem 2.1. The following are equivalent for a space X:

(a) X is expandable.

(b) Every A-covering of X has a locally finite open refinement.

(c) Every directed A-covering of X has a locally finite open refinement.

(d) Every directed A-covering of X has a locally finite closed refinement.

(e) Every directed A-covering of X has an open locally starrefinement.²⁾

(f) Every directed A-covering of X has an open cushioned refinement.

Theorem 2.2. The following are equivalent for a space X:

(a) X is almost expandable.

(b) Every A-covering of X has a point-finite open refinement.

(c) Every directed A-covering of X has a point-finite open refinement.

(d) Every directed A-covering of X has an open Δ -refinement.

(e) Every directed A-covering of X has a cushioned refinement.

Theorem 2.3. The following are equivalent for a space X:

1) A space X is said to be *finitely subparacompact*, if every finite open covering of X has a σ -discrete closed refinement.

2) Let \mathfrak{U} and \mathfrak{V} be two coverings of a space X. If every point of X has a neighborhood W such that $St(W,\mathfrak{V}) \subset U$ for some $U \in \mathfrak{U}$, then we say that the covering \mathfrak{V} is a *locally star-refinement* of the covering \mathfrak{U} . Obviously, every open star-refinement is a locally star-refinement and every locally star-refinement is a Λ -refinement.

(a) X is θ -expandable.

(b) For every A-covering \mathfrak{U} of X there is a sequence $\mathfrak{V}_n, n = 1, 2, \cdots$, of open refinements of \mathfrak{U} such that for every point x of X there is some \mathfrak{V}_n of which only finitely many elements contain x.

(c) For every directed A-covering \mathfrak{U} of X there is a sequence $\mathfrak{B}_n, n=1,2,\cdots$, of open refinements of \mathfrak{U} such that for every point x of X there is some \mathfrak{B}_n of which only finitely many elements contain x.

(d) For every directed A-covering \mathfrak{U} of X there is a sequence \mathfrak{B}_n , $n=1,2,\ldots$, of open refinements of \mathfrak{U} such that for every point x of X there is some \mathfrak{B}_n and some $U \in \mathfrak{U}$ with $St(x,\mathfrak{B}_n) \subset U$.

(e) Every directed A-covering of X has a σ -cushioned refinement.

An open covering is said to be a *B*-covering [2], if it has a bounded locally finite refinement. Using *B*-coverings instead of *A*-coverings, we obtain analogous characterizations of bounded expandability, bounded almost expandability and bounded θ -expandability.

An open covering $\{U_{\lambda} | \lambda \in \Lambda\}$ is said to be a *C*-covering, if it satisfies that $U_{\lambda} = \bigcap_{\mu \neq \lambda} \bigcup_{\nu \neq \mu} U_{\nu}$ for every $\lambda \in \Lambda$. Every *C*-covering is a *B*-covering.

Theorem 2.4. The following are equivalent for a space X:

(a) X is boundedly subexpandable.

(b) For every C-covering \mathfrak{U} of X there is a sequence \mathfrak{B}_n , $n=1,2,\cdots$, open refinements of \mathfrak{U} such that for every point x of X there is some \mathfrak{B}_n of which only one element contains x.

(c) For every C-covering \mathfrak{U} of X there is a sequence \mathfrak{B}_n , $n=1,2,\cdots$, open refinements of \mathfrak{U} such that for every point x of X there is some \mathfrak{B}_n and some $U \in \mathfrak{U}$ with $St(x,\mathfrak{B}_n) \subset U$.

(d) Every C-covering has a σ -discrete closed refinement.

(e) Every C-covering has a σ -locally finite closed refinement.

(f) Every C-covering has a σ -cushioned refinement.

3. In [3] and [4], it has been shown that a θ -refinable space is paracompact (resp. metacompact), if and only if it is expandable (resp. almost expandable). Similarly we have

Theorem 3.1. A θ -refinable space is subparacompact if and only if it is subexpandable.

4. The following mapping theorem, sum theorem and subset theorem for θ -expandable spaces and subexpandable spaces hold.

Theorem 4.1. Let $f: X \rightarrow Y$ be a continuous, closed onto mapping. If X is θ -expandable (resp. subexpandable), then Y is θ -expandable (resp. subexpandable)

Theorem 4.2. Let \mathfrak{F} be a σ -locally finite closed covering of a space X. If every member of \mathfrak{F} is θ -expandable (resp. subexpandable), then X is θ -expandable (resp. subexpandable).

454

Theorem 4.3. Every F_{σ} -subset of a θ -expandable (resp. subexpandable) space is θ -expandable (resp. subexpandable).

For θ -expandable spaces, furthermore, the following mapping theorem and product theorem hold.

Theorem 4.4. Let $f: X \rightarrow Y$ be a perfect mapping. If Y is θ -expandable, then X is θ -expandable.

Theorem 4.5. The product space of a θ -expandable space and a compact space is θ -expandable.

5. A space X is said to be countably expandable if for every countable locally finite collection $\{F_n | n=1, 2, \dots\}$ of subsets of X there exists a countable locally finite collection $\{G_n | n=1, 2, \dots\}$ of open subsets of X such that $F_n \subset G_n$ for every n. Similarly, countably θ -expandable, etc. are defined. In [3], it has been shown that a space is countably expandable if and only if it is countably paracompact.

Theorem 5.1. The following are equivalent for a space X:

(a) X is countably almost expandable.

- (b) X is countably metacompact.
- (c) X is countably θ -expandable.
- (d) X is countably θ -refinable.

Theorem 5.2. A space is countably subexpandable if and only if it is countably subparacompact.

Theorem 5.3. The following are equivalent for a normal space X:

- (a) X is countably expandable.
- (b) X is countably almost expandable.
- (c) X is countably θ -expandable.
- (d) X is countably subexpandable.

References

- M. Katětov: On extension of locally finite coverings. Colloq. Math., 6, 145-151 (1958).
- [2] Y. Katuta: On strongly normal spaces. Proc. Japan Acad., 45, 692-695 (1969).
- [3] L. L. Krajewski: On expanding locally finite collections. Canad. J. Math., 23, 58-68 (1971).
- [4] J. C. Smith and L. L. Krajewski: Expandability and collectionwise normality. Trans. Amer. Math. Soc., 160, 437–451 (1971).
- [5] J. Mack: Directed covers and paracompact spaces. Canad. J. Math., 19, 649-654 (1967).

No. 6]