98. Expandability and Product Spaces

By Yûkiti KATUTA

(Comm. by Kenjiro SHODA, M. J. A., June 12, 1973)

Introduction. Let m be an infinite cardinal number. A to-1. pological space X is said to be m-expandable (resp. discretely m-ex*pandable*), if for every locally finite (resp. discrete) collection $\{F_{\lambda} | \lambda \in \Lambda\}$ of subsets of X with $|\Lambda| \leq \mathfrak{m}$, where $|\Lambda|$ denotes the power of Λ , there exists a locally finite collection $\{G_{\lambda} | \lambda \in \Lambda\}$ of open subsets of X such that $F_{\lambda} \subset G_{\lambda}$ for every $\lambda \in \Lambda$. A collection $\{G_{\lambda} | \lambda \in \Lambda\}$ of subsets of a topological space is said to be hereditarily conservative (H.C.) if every collection $\{H_{\lambda} | \lambda \in A\}$, such that $H_{\lambda} \subset G_{\lambda}$ for every $\lambda \in A$, is closure preserving. A topological space X is said to be H.C. m-expandable (resp. discretely H.C. m-expandable), if for every locally finite (resp. discrete) collection $\{F_{\lambda} | \lambda \in \Lambda\}$ of subsets of X with $|\Lambda| \leq \mathfrak{m}$, there exists a hereditarily conservative collection $\{G_{\lambda} | \lambda \in A\}$ of open subsets of X such that $F_{\lambda} \subset G_{\lambda}$ for every $\lambda \in \Lambda$. A topological space is said to be *expandable*, *discrete*ly expandable, H.C. expandable or discretely H.C. expandable, respectively, if it is m-expandable, discretely m-expandable, H.C. m-expandable or discretely H.C. m-expandable for every cardinal number m ([1], [2]).

In [1] and [2], Krajewski and Smith showed the following:

(i) X is \aleph_0 -expandable if and only if X is countably paracompact.

(ii) X is m-expandable if and only if X is discretely m-expandable and countably paracompact.

(iii) X is collectionwise normal if and only if X is discretely expandable and normal.

Let $T(\mathfrak{m})$ be a set whose power is \mathfrak{m} and t_0 be a distinguished element of $T(\mathfrak{m})$. On $T(\mathfrak{m})$ we define a topology by the following: A subset of $T(\mathfrak{m})$ is open if and only if it dose not contain t_0 or its complement is finite. Then $T(\mathfrak{m})$ is a compact Hausdorff space. If X is a topological space, then in the product space $X \times T(\mathfrak{m})$ let $X_0 = X \times \{t_0\}$.

The main purpose of this paper is to show the following theorem which is a generalization of Martin [3, Lemma 1].

Theorem 1. The following statements are equivalent for a topological space X.

(a) X is m-expandable.

(b) $X \times T(\mathfrak{m})$ is \mathfrak{m} -expandable.

(c) $X \times T(\mathfrak{m})$ is discretely \mathfrak{m} -expandable.

(d) $X \times T(\mathfrak{m})$ is H.C. \mathfrak{m} -expandable.

(e) $X \times T(\mathfrak{m})$ is discretely H.C. \mathfrak{m} -expandable.

(f) If F is a closed subset of $X \times T(\mathfrak{m})$ with $F \cap X_0 = \emptyset$, then there exists an open subset G of $X \times T(\mathfrak{m})$ such that $F \subset G$ and $\overline{G} \cap X_0 = \emptyset$.

The proof will be given in $\S 2$.

Corollary. If $X \times T(\mathfrak{m})$ is normal, then X is \mathfrak{m} -expandable.

Using Theorem 1, we can prove the following two theorems by the same argument as in [3].

Theorem 2. Let $f: X \rightarrow Y$ be a continuous closed mapping from an \mathfrak{m} -expandable space X onto a topological space Y, and let i be the identity mapping on $T(\mathfrak{m})$. If $f \times i$ is a hereditarily quotient mapping, then Y is \mathfrak{m} -expandable.

Theorem 3. The image of an m-expandable space under a continuous, closed, bi-quotient mapping is m-expandable. Hence the image of an expandable space under a continuous, closed, bi-quotient mapping is expandable.

Finally, let X be a collectionwise normal space which is not countably paracompact (cf. Rudin [4]). Then X is discretely m-expandable and not m-expandable for every infinite cardinal number m. Hence $X \times T(m)$ is not discretely H.C. m-expandable by Theorem 1. Since T(m) is compact, the projection $p: X \times T(m) \rightarrow X$ is a perfect mapping. Hence the inverse image of a discretely (H.C.) m-expandable space under a perfect mapping is not necessarily discretely (H.C.) m-expandable. Thus we have a negative answer of problem (4) of Krajewski-Smith [2, p. 450].

2. Proof of Theorem 1.

Lemma. Let A be a subset of $X \times T(\mathfrak{m})$ with $A \cap X_0 = \emptyset$, and let $A_t = \{x \in X \mid (x, t) \in A\}$ for each $t \in T(\mathfrak{m})$. Then, the collection $\mathfrak{A} = \{A_t \mid t \in T(\mathfrak{m})\}$ of X is locally finite if and only if $\overline{A} \cap X_0 = \emptyset$.

Proof. Assume that \mathfrak{A} is locally finite. Then a point x of X has a neighborhood U and a subset V of $T(\mathfrak{m})$ such that $V \ni t_0$, $T(\mathfrak{m}) - V$ is finite and $U \cap A_t = \emptyset$ for each $t \in V$. Obviously, $(U \times V) \cap A = \emptyset$. Since V is a neighborhood of t_0 , we have $(x, t_0) \notin \overline{A}$. Hence $\overline{A} \cap X_0 = \emptyset$.

Conversely, assume $\overline{A} \cap X_0 = \emptyset$. Let x be a point of X. We have a neighborhood U of x and a neighborhood V of t_0 such that $(U \times V) \cap A$ $= \emptyset$. Then $T(\mathfrak{m}) - V$ is a finite subset of $T(\mathfrak{m})$ and $U \cap A_t = \emptyset$ for each $t \in V$. Hence \mathfrak{A} is locally finite.

Proof of Theorem 1. (a) \rightarrow (b): By [1, Corollary 3.6.2], the product space of an m-expandable space and a compact space is m- expandable.

 $(b)\rightarrow(c), (b)\rightarrow(d), (c)\rightarrow(e) \text{ and } (d)\rightarrow(e):$ These are obvious.

450

(e) \rightarrow (f): Assume that (e) holds and let F be a closed subset of $X \times T(\mathfrak{m})$ with $F \cap X_0 = \emptyset$. If we put $F_t = F \cap (X \times \{t\})$ for each $t \in T(\mathfrak{m})$, then the collection $\{F_t | t \in T(\mathfrak{m})\}$ is discrete. By assumption, we have a hereditarily conservative collection $\{G_t | t \in T(\mathfrak{m})\}$ of open subsets of $X \times T(\mathfrak{m})$ such that $F_t \subset G_t$ for each $t \in T(\mathfrak{m})$. Since $F_{t_0} = \emptyset$, we may assume $G_{t_0} = \emptyset$. Let $H_t = G_t \cap (X \times \{t\})$ for each $t \in T(\mathfrak{m})$, and let $H = \bigcup \{H_t | t \in T(\mathfrak{m})\}$. Since $X \times \{t\}$ is open and closed in $X \times T(\mathfrak{m})$ for each $t \in T(\mathfrak{m}) - \{t_0\}$, H_t is open and $H_t \subset X \times \{t\}$. Obviously, H is an open subset which contains F. Since $\{G_t | t \in T(\mathfrak{m})\}$ is hereditarily conservative,

$$\begin{split} \overline{H} &= \overline{\cup \{H_t \mid t \in T(\mathfrak{m})\}} = \cup \{\overline{H}_t \mid t \in T(\mathfrak{m})\} \\ &= \cup \{\overline{H}_t \mid t \in T(\mathfrak{m}) - \{t_0\}\} \subset X \times (T(\mathfrak{m}) - \{t_0\}) \end{split}$$

Hence $\overline{H} \cap X_0 = \emptyset$. Thus (f) holds.

(f) \rightarrow (a): Assume that (f) holds. Let $\{F_{\lambda} | \lambda \in \Lambda\}$ be a locally finite collection of subsets of X with $|\Lambda| \leq \mathfrak{m}$. Then there is an injection $i: \Lambda \rightarrow T(\mathfrak{m}) - \{t_0\}$. For each $t \in T(\mathfrak{m})$ we define F_i by

$$F_t = \begin{cases} F_\lambda & \text{if } t = i(\lambda), \\ \emptyset & \text{if } t \notin i(\Lambda). \end{cases}$$

Let $F = \bigcup \{F_t \times \{t\} | t \in T(\mathfrak{m})\}$, then $F \cap X_0 = \emptyset$. Since $\{F_t | t \in T(\mathfrak{m})\}$ is locally finite, by Lemma we have $\overline{F} \cap X_0 = \emptyset$. By assumption, there exists an open subset G of $X \times T(\mathfrak{m})$ such that $\overline{F} \subset G$ and $\overline{G} \cap X_0 = \emptyset$. Let $G_t = \{x \in X | (x, t) \in G\}$ for each $t \in T(\mathfrak{m})$. Then, by Lemma, $\{G_t | t \in T(\mathfrak{m})\}$ is locally finite. Let $G_{\lambda} = G_{i(\lambda)}$ for each $\lambda \in \Lambda$, then $\{G_{\lambda} | \lambda \in \Lambda\}$ is locally finite open collection and $F_{\lambda} \subset G_{\lambda}$ for each $\lambda \in \Lambda$. Hence X is mexpandable. Thus (a) holds and the proof is completed.

References

- L. L. Krajewski: On expanding locally finite collections. Canad. J. Math., 23, 58-68 (1971).
- [2] J. C. Smith and L. L. Krajewski: Expandability and collectionwise normality. Trans. Amer. Math. Soc., 160, 437-451 (1971).
- [3] H. W. Martin: Product maps and countable paracompactness. Canad. J. Math., 24, 1187-1190 (1972).
- [4] M. E. Rudin: A normal space X for which $X \times I$ is not normal. Fund. Math., 73, 179-186 (1971).

No. 6]