93. Amenable Transformation Groups. II

By Kôkichi SAKAI

(Comm. by Kinjirô Kunugi, M. J. A., June 12, 1973)

Introduction. Let X be a nonvoid set and G be a group of transformations of *X* onto itself. Then we shall say the pair X=(G,X) is a transformation group. Let m(X) be the Banach space of all bounded real functions on X and $m(X)^*$ the conjugate Banach space of m(X). For every $s \in G$, define the mapping $l_s : m(X) \rightarrow m(X)$ by $l_s f = {}_s f$ for any $f \in m(X)$ where $_s f(x) = f(sx)$ for $x \in X$, and denote by L_s the adjoint of l_s . For $\varphi \in m(X)^*$ it is called a mean if $\varphi \geq 0$ and $\varphi(I_X) = 1$ where I_X is the constant one function on X. A mean φ is called *multiplicative* if $\varphi(f \cdot g) = \varphi(f) \cdot \varphi(g)$ for any $f, g \in m(X)$. For a subset K of G, a mean φ is K-invariant if $L_s\varphi=\varphi$ for all $s\in K$. We denote by δ_x the Dirac measure at $x \in X$. Let IM(X) [βX] be the set of all G-invariant [multiplicative] means. We shall say the transformation group X = (G, X) is amenable if IM(X) is nonempty.

The purpose of this paper is to characterize the transformation group X=(G,X) such that $IM(X)\cap Co(\beta X)$ is nonempty where $Co(\beta X)$ is the convex hull of βX and to study the extreme point of the convex set $IM(X)\cap Co(\beta X)$. For semigroups the analogous problem is investigated by A. T. Lau in [3] and [4].

§ 1. Multiplicative means. In this section we give the Lemmas used in later sections. Let X=(G,X) be a transformation group and $\varphi \in m(X)^*$ be a mean. For any subset A of X, we write $\varphi(A)$ instead of $\varphi(I_A)$ where I_A is the characteristic function of A. We put $H(\varphi) = \{s \in G : L_s \varphi = \varphi\}$.

Lemma 1. Let $\Phi = \{ \varphi_i \in \beta X : i = 1, 2, \dots, m \text{ and } \varphi_i \neq \varphi_j \text{ if } i \neq j \}$ and $\Psi = \{ \psi_i \in \beta X : i = 1, 2, \dots, n \text{ and } \psi_i \neq \psi_j \text{ if } i \neq j \}$. If $\sum_{i=1}^m \lambda_i \varphi_i = \sum_{i=1}^n \mu_i \psi_i$ where λ_i 's and μ_i 's are positive numbers, then $\Phi = \Psi$.

Lemma 2. Let $\varphi_0 \in \beta X$. For a subset $\{a_1, a_2, \dots, a_n\}$ of G put $\varphi_i = L_{a_i}\varphi_0 \in \beta X$ for $1 \le i \le n$. If $\varphi_1, \varphi_2, \dots, \varphi_n$ are mutually distinct, there is a subset $A_0 \subset X$ such that for any $1 \le i, j \le n$ $\varphi_i(A_j) = \delta_{ij}$ and $A_i \cap A_j = \phi$ $(i \ne j)$ where $A_i = a_i A_0$.

Now for a mean φ we consider the condition (#): there is a positive constant c such that $\varphi(A) \geq c$ or $\varphi(A) = 0$ for any $A \subset X$. If the condition (#) is satisfied, there is a subset $A \subset X$ such that $\varphi(A) > 0$ and that $\varphi(A \cap B)$ is equal to $\varphi(A)$ or 0 for any $B \subset X$. For example, every $\varphi \in Co(\beta X)$ satisfies the condition (#).

Lemma 3. Let $\varphi \in IM(X)$ satisfy the condition (#) and A be a

subset of X such that $\varphi(A) > 0$ and that $\varphi(A \cap B)$ is equal to $\varphi(A)$ or 0 for any $B \subset X$. Putting $H = \{s \in G : \varphi(sA \cap A) = \varphi(A)\}$ and $\varphi_A(g) = \varphi(I_A \cdot g)/\varphi(A)$ for any $g \in m(X)$, we have the following:

- (1) H is a subgroup of G with finite index.
- (2) For any $B, C \subset X$ and $s \in H$, $\varphi(A \cap B \cap C) = \varphi(sA \cap B \cap C)$ = $\varphi(A \cap sB \cap C)$.
 - (3) For any $f, g \in m(X)$ and $s \in H$, $\varphi_A(f \cdot g) = \varphi_A(f \cdot g)$.
 - (4) $H = \{ s \in G : \varphi_A(f \cdot g) = \varphi_A(f \cdot g) \text{ for any } f, g \in m(X) \} = H(\varphi_A).$
- § 2. Main theorem. In this section we give various characterizations of a transformation group X=(G,X) with G-invariant mean in the convex hull of βX . For any finite set M denote by |M| the cardinality of M.

Theorem 1. The following conditions on a transformation group X=(G,X) are equivalent:

- (1) $IM(X) \cap Co(\beta X)$ is nonempty.
- (2) There is $\varphi \in IM(X)$ such that the subgroup $H(\varphi)$ of G has finite index.
- (3) There is an integer $n \ge 1$ such that for any finite subset K of G there exists a finite subset F_K of X having the properties $|F_K| = n$ and $sF_K = F_K$ for all $s \in K$.
- (4) For some integer $n \ge 1$ there is a net $\{p^{\alpha} = 1/n \sum_{i=1}^{n} \delta_{x_{i}^{\alpha}}\}$ in $Co(\beta X)$ such that $\lim_{\alpha} ||L_{s}p^{\alpha} p^{\alpha}|| = 0$ for any $s \in G$.
- **Proof.** (1) \Rightarrow (2): Let $\varphi = \sum_{i=1}^n \lambda_i \varphi_i \in IM(X) \cap Co(\beta X)$ where φ_i 's are mutually distinct elements in βX . Then, by the *G*-invariancy of φ and Lemma 1, we have $\{\varphi_1, \varphi_2, \cdots, \varphi_n\} = \{L_s \varphi_1, L_s \varphi_2, \cdots, L_s \varphi_n\}$ for all $s \in G$. So each $H(\varphi_i)$ has finite index in G.
- $(2) \Rightarrow (3)$: For $\varphi \in \beta X$ assume that $H(\varphi)$ has finite index in G. Let $\{a_1 = e, a_2, \cdots, a_n\}$ be a representative system of the left coset space $G/H(\varphi)$ and put $\varphi_i = L_{a_i} \varphi$ for any $1 \leq i \leq n$. Then, by Lemma 2, there is a subset $A \subset X$ such that for any $1 \leq i, j \leq n$ $\varphi_i(A_j) = \delta_{ij}$ and $A_i \cap A_j = \phi$ $(i \neq j)$ where $A_i = a_i A$. For any $1 \leq i \leq n$ and $s \in G$ there correspond an integer k and $h_{si} \in H(\varphi)$ such that $sa_i = a_k h_{si}$. Now for any finite subset K of G put $H_K = \{h_{si} : s \in K \text{ and } i = 1, 2, \cdots, n\}$. Since $\varphi = \varphi_1$ is a multiplicative $H(\varphi)$ -invariant mean, by Theorem 3 in [5], there is $x \in A_1$ such that hx = x for all $h \in H_K$. Putting $F_K = \{a_1x, a_2x, \cdots, a_nx\}$, clearly we have $|F_K| = n$ and $sF_K = F_K$ for all $s \in K$.

The other implications $(3) \Rightarrow (4) \Rightarrow (1)$ are obtained by the same way as in A. T. Lau [2, Theorems 5.3 and 5.5]. q.e.d.

Similarly we have

Theorem 2. Let X=(G,X) be a transformation group and n be a fixed positive integer. Then the following conditions are equivalent:

(1) There is a G-invariant mean φ of the form $\varphi = \sum_{i=1}^{n} \lambda_i \varphi_i$ where

for any $1 \le i \le n$ $\varphi_i \in \beta X$ and $\lambda_i > 0$, $\sum_{i=1}^n \lambda_i = 1$ and $\varphi_i \ne \varphi_j$ if $i \ne j$.

- (2) There are mutually disjoint subsets A_1, A_2, \dots, A_n of X such that for any finite subset K of G there exists a finite subset $F_K = \{x_1, x_2, \dots, x_n : x_i \in A_i \text{ for any } 1 \leq i \leq n\}$ with the property $sF_K = F_K$ for all $s \in K$.
- § 3. Extreme points of $IM(X) \cap Co(\beta X)$. Let X=(G,X) be an amenable transformation group such that $IM(X) \cap Co(\beta X)$ is nonempty. Each extreme point of the convex set $IM(X) \cap Co(\beta X)$ is also an extreme point of IM(X). For $\varphi \in \beta X$ assume that $H(\varphi)$ has finite index in G. Let $\{a_1=e,a_2,\cdots,a_n\}$ be a representative system of $G/H(\varphi)$ and put $\varphi_i=L_{a_i}\varphi$ for any $1\leq i\leq n$. Then $\psi=1/n\sum_{i=1}^n\varphi_i$ is an extreme point of $IM(X)\cap Co(\beta X)$. In this case $\tilde{H}=\bigcap_{i=1}^nH(\varphi_i)$ has finite index in G and each φ_i is \tilde{H} -invariant. Moreover, using Lemma 3, we can conclude that \tilde{H} is equal to $\{s\in G: \psi(f\cdot sg)=\psi(f\cdot g) \text{ for any } f,g\in m(X)\}$.

Conversely every extreme point of $IM(X) \cap Co(\beta X)$ is given in the above form.

Theorem 3. Let X=(G,X) be an amenable transformation group and φ be an extreme point of the convex set IM(X). If $H=\{s\in G: \varphi(f\cdot sg)=\varphi(f\cdot g) \text{ for any } f,g\in m(X)\}$ has finite index in G, then φ is in $IM(X)\cap Co(\beta X)$.

Proof. Let $\{a_1 = e, a_2, \dots, a_n\}$ be a representative system of G/H and fix an arbitrary $f \in m(X)$ with $0 \le f \le 1$. Now define $\nu \in m(X)^*$ as follows:

$$\nu(g) = \varphi(f) \cdot \varphi(g) - \frac{1}{n} \sum_{i=1}^{n} \varphi(f \cdot a_i g)$$

for any $g \in m(X)$. Then $\nu(I_X) = 0$ and $L_s \nu = \nu$ for any $s \in G$. Put $\varphi^{\pm} = \varphi \pm \nu$. Then we have easily $\varphi^{\pm} \in IM(X)$ and $\varphi = (\varphi^{+} + \varphi^{-})/2$. Since φ is extreme, we have $\nu \equiv 0$. Consequently we have for any $f, g \in m(X)$ with $0 \leq f \leq 1$

(##)
$$\varphi(f) \cdot \varphi(g) = \frac{1}{n} \sum_{i=1}^{n} \varphi(f \cdot a_i g).$$

By the linearlity of φ , (##) is also valid for any $f,g\in m(X)$. For any $A\subset X$, by (##), it holds $\varphi(A)^2=1/n\sum_{i=1}^n\varphi(A\cap a_i^{-1}A)\geq (1/n)\varphi(A)$. So $\varphi(A)=0$ or $\varphi(A)\geq 1/n$. Thus φ satisfies the condition (#) in § 1. Let $A\subset X$ have the properties that $\varphi(A)>0$ and that $\varphi(A\cap B)$ is equal to $\varphi(A)$ or 0 for any $B\subset X$. Then the subgroup $H_A=\{s\in G: \varphi(sA\cap A)=\varphi(A)\}$ contains H. Let $\{b_1=e,b_2,\cdots,b_m\}[\{c_1,c_2,\cdots,c_k\}]$ be a representative system of $G/H_A[H_A/H]$. Clearly it holds $\varphi(b_iA\cap b_jA)=\delta_{ij}\varphi(A)$ and $\varphi(b_ic_jA\cap A)=\delta_{ij}\varphi(A)$ for any $1\leq i,j\leq n$. Since $\{b_ic_j:i=1,2,\cdots,m \text{ and } j=1,2,\cdots,k\}$ is a representative system of G/H, by (##), we have:

$$\varphi(A)^2 = \frac{1}{n} \sum_{i=1}^m \sum_{j=1}^k \varphi(b_i c_j A \cap A) = \frac{k}{n} \varphi(A) = \frac{1}{m} \varphi(A),$$

$$\varphi(A) \cdot \varphi(g) = \frac{1}{n} \sum_{i=1}^{m} \sum_{j=1}^{n} \varphi(I_A \cdot {}_{b_i e_j} g) = \frac{1}{m} \sum_{i=1}^{m} \varphi(I_{b_i A} \cdot g)$$

for any $g \in m(X)$. For $1 \le i \le m$, put $A_i = b_i A$ and $\varphi_i(g) = \varphi(I_{A_i} \cdot g)/\varphi(A)$ $= m\varphi(I_A \cdot b_i g)$ for any $g \in m(X)$. Then each $\varphi_i = L_{b_i} \varphi_i$ is an *H*-invariant mean and we have $\varphi = 1/m \sum_{i=1}^m \varphi_i$. It remains to prove that each φ_i is multiplicative. Now again using the relation (##) we have

$$\varphi(I_A \cdot f) \cdot \varphi(I_A \cdot g) = (1/m)\varphi(I_A \cdot f \cdot g)$$

for any $f,g \in m(X)$. So $\varphi_1(f) \cdot \varphi_1(g) = m^2 \varphi(I_A \cdot f) \varphi(I_A \cdot g) = m \varphi(I_A \cdot f \cdot g)$ = $\varphi_1(f \cdot g)$, that is, φ_1 is multiplicative. Consequently each φ_i is also multiplicative.

The following is a sufficient condition in order that every extreme point of IM(X) is contained in $Co(\beta X)$, which is a generalization of Theorem 4 in [5].

Theorem 4. Let X=(G,X) be an amenable transformation group and H a subgroup of G with finite index. Then the following conditions are equivalent:

- (1) For every $\varphi \in IM(X)$, $f, g \in m(X)$ and $s \in H$ we have $\varphi(f \cdot g) = \varphi(f \cdot g)$.
- (2) Every extreme point of IM(X) is contained in the convex hull of all the H-invariant multiplicative means.
- (3) Let $A \subset X$ have the property that $\varphi(A) > 0$ for some $\varphi \in IM(X)$. Then, for any $s \in H$, there is $x \in A$ such that sx = x.

References

- [1] E. E. Granirer: Extremely amenable semigroups. II. Math. Scand., 20, 93-113 (1967).
- [2] E. E. Granirer and A. T. Lau: Invariant means on locally compact groups. Illinois J. Math., 15, 249-257 (1971).
- [3] A. T. Lau: Topological semigroups with invariant means in the convex hull of multiplicative means. Trans. Amer. Math. Soc., 148, 69-84 (1970).
- [4] —: Functional analytic properties of topological semigroups and N-extreme amenability. ibid, 152, 431-439 (1970).
- [5] K. Sakai: Extremely amenable transformation semigroups. Proc. Japan Acad., 49, 424-427 (1973).
- [6] —: Amenable transformation groups. Sci. Report of Kagoshima Univ., 22, 1-7 (1973).