hold.

87. Cotangential Decomposition of the Sheaf \mathcal{D}'/\mathcal{E}

By Daisuke FUJIWARA and Kôichi UCHIYAMA University of Tokyo

(Comm. by Kôsaku Yosida, M. J. A., June 12, 1973)

The aim of this note is to construct a sheaf in the distribution theory which has analogous properties to those of the sheaf C important in the hyperfunction theory.

Let Ω be a domain in \mathbb{R}^n and let $\mathfrak{D}', \mathfrak{C}, \mathfrak{B}$ and \mathcal{A} denote the sheaves of the germs of distributions, infinitely differentiable functions, hyperfunctions and real analytic functions in Ω respectively. The quotient sheaves $\mathfrak{D}'/\mathfrak{C}, \mathfrak{B}/\mathfrak{A}$ and $\mathfrak{D}'/\mathfrak{A}$ should be called the sheaves of singularities over Ω . In 1969 M. Sato decomposed the sheaf $\mathfrak{B}/\mathfrak{A}$ into the cotangential directions. That is, he constructed a sheaf \mathcal{C} over the cosphere bundle $S^*\Omega$ whose direct image $\pi_*\mathcal{C}$ along the projection π onto the base space Ω is isomorphic to the sheaf $\mathfrak{B}/\mathfrak{A}$. Actually this induces an isomorphism of global sections:

 $\mathcal{B}(\Omega)/\mathcal{A}(\Omega)\cong\pi_*\mathcal{C}(\Omega)\cong\mathcal{C}(S^*\Omega).$

The sheaf C is flabby as well as the sheaf \mathcal{B} . (See Sato-Kashiwara [3], Sato-Kawai-Kashiwara [4].)

Let $\mathscr{H}^s_{\text{loc}}$ be the sheaf of distributions in the local Sobolev space $H^s_{\text{loc}}(\Omega)$. In this note we decompose the sheaf $\mathscr{H}^s_{\text{loc}}/\mathscr{E}$ to obtain a sheaf \mathscr{M}^s over the cosphere bundle $S^*\Omega$ such that the following isomorphisms $H^s_{\text{loc}}(\Omega)/\mathscr{E}(\Omega) \cong \pi_*\mathscr{M}^s(\Omega) \cong \mathscr{M}^s(S^*\Omega)$

This sheaf \mathcal{M}^s is soft.

The supports of sections of \mathcal{M}^s are closed subsets of the cosphere bundle $S^*\Omega$. These correspond to what is called "singular supports S-S" in the theory of the sheaf \mathcal{C} . Their projections to the base space Ω coincide with the classical singular supports of distributions. Our definition of the sheaf \mathcal{M}^s is essentially the same as announced in Hörmander's paper [1]. And the wave front sets introduced by him in the case of \mathcal{D}'/\mathcal{C} are nothing but the supports of the sections of our sheaf $\mathcal{M}^{-\infty}$.

Let ω be an open set in Ω and σ be an open set in the unit sphere S^{n-1} in \mathbb{R}^n .

We shall introduce linear spaces as the following.

 $H^{s,\infty}_{\text{loc}}(\omega imes \sigma) = \{ u \in H^s_{\text{loc}}(\omega) ; \text{ for any compact sets } K \subset \omega \subset \Omega \text{ and } \kappa \subset \sigma \subset S^{n-1}, \text{ there exists a function } \phi_K \in C^{\infty}_0(\omega) \text{ such that (i) } \phi_K \ge 0 \text{ and } \phi_K \equiv 1 \text{ near } K \text{ and (ii) for any positive integer } N, |\widehat{\phi u}(\xi)| \le C_N/(1+|\xi|)^N \text{ so long}$

as the direction of ξ lies in κ .

Here \hat{v} stands for the Fourier transform of v.

Lemma 1. Let $\sigma_{\xi_0} \subset S^{n-1}$ be a neighborhood of the direction of ξ_0 . Assume that the rapidly decreasing estimate for $u \in \mathcal{E}'(\omega)$

(*) $|\hat{u}(\xi)| \leq C_N/(1+|\xi|)^N$ for any positive integer N holds so long as the direction of ξ lies in σ_{ξ_0} . Then for any $\phi \in C_0^{\infty}(\omega)$ the estimate (*) of ϕu holds so long as the direction of ξ lies in a smaller neighborhood thereof.

The conditions in the above definition can be localized.

Lemma 2. $H^{s,\infty}_{\text{loc}}(\omega \times \sigma) = \{ u \in H^s_{\text{loc}}(\omega) ; \text{ for any } (x_0, \xi_0) \in \omega \times \sigma \text{ there}$ exist a function $\phi \in C^{\infty}_0(\omega)$ such that (i) $\phi(x_0) \neq 0$ and (ii) $|\phi u(\xi)| \leq C_N/(1+|\xi|)^N$ for any integer $N \geq 0$ so long as the direction of ξ lies in σ_{ξ_0} .

When $s = -\infty$, $H^{s,\infty}_{loc}(\omega \times \sigma)$ is equal to the space $\mathscr{D}'_{C[\sigma]}(\omega)$ of Hörmander where $[\sigma]$ is the open cone spanned by the origin and σ .

We define $M^{s}(\omega \times \sigma)$ as the quotient space $H^{s}_{loc}(\omega)/H^{s,\infty}_{loc}(\omega \times \sigma)$. The correspondence $M^{s}: \omega \times \sigma \mapsto M^{s}(\omega \times \sigma)$ defines a presheaf. The sheaf associated with M^{s} is denoted by \mathcal{M}^{s} . Our results are following theorems.

Theorem 1. The sheaves $\mathcal{H}^s_{loc}/\mathcal{E}$ and $\pi_*\mathcal{M}^s$ are isomorphic. Moreover the global sections $H^s_{loc}(\Omega)/\mathcal{E}(\Omega)$ and $\mathcal{M}^s(\Omega \times S^{n-1})$ are isomorphic. Theorem 2. The sheaf \mathcal{M}^s is soft.

Outline of proofs. We need some notations. We denote a finite covering of S^{n-1} by S. We put $Z(\omega \times S; M^s) = \{(f_{\sigma})_{\sigma \in S}; f_{\sigma} \in M^s(\omega \times \sigma) \text{ and } f_{\sigma} = f_{\sigma'} \text{ on } \omega \times (\sigma \cap \sigma')\}.$

Lemma 3. Let ω , ω' and ω'' be neighborhoods of x. Assume that ω' and ω'' are relatively compact in ω and ω' respectively. Let S' be a finite refinement of the covering S. Then there exist mappings, shown by broken arrows, which make the diagram commutative.

Here the mappings 1, 2 and 3 are defined by restriction.

With this lemma we are able to go to

Proof of Theorem 1. The stalk of $\pi_*\mathcal{M}^s$ at $x(\pi_*\mathcal{M}^s)_x$ = $\lim_{\omega \ni x} (\pi_*\mathcal{M}^s)(\omega) = \lim_{\omega \ni x} \mathcal{M}^s(\omega \times S^{n-1}) = \lim_{\omega, \mathcal{S}} Z(\omega \times \mathcal{S}; \mathcal{M}^s)$. Lemma 3 shows that the right hand side is isomorphic to $\lim_{\omega \ni x} H^s_{\text{loc}}(\omega)/\mathcal{E}(\omega) = (\mathcal{H}^s_{\text{loc}}/\mathcal{E})_x$.

404

No. 6]

Hence $\mathcal{H}^{s}_{\text{loc}}/\mathcal{E} \cong \pi_{*}\mathcal{M}^{s}$. This gives an exact sequence: $0 \rightarrow \mathcal{E} \rightarrow \mathcal{H}^{s}_{\text{loc}} \rightarrow \pi_{*}\mathcal{M}^{s} \rightarrow 0$.

Since $\mathcal E$ is a fine sheaf, this induces an exact sequence of global sections:

$$0 {\rightarrow} \mathcal{E}(\Omega) {\rightarrow} H^s_{\text{loc}}(\Omega) {\rightarrow} (\pi_* \mathcal{M}^s)(\Omega) {\rightarrow} 0.$$

Therefore $H^s_{\text{loc}}(\Omega)/\mathcal{E}(\Omega) \cong \mathcal{M}^s(\Omega \times S^{n-1})$. Theorem 1 is thus proved.

Proof of Lemma 3. Let $(f_{\sigma})_{\sigma \in S}$ be an element in $Z(\omega \times S, M^s)$. Each f_{σ} belonging to $M^s(\omega \times \sigma)$ is represented by $u_{\omega\sigma} \in H^s_{loc}(\omega)$. We define $v_{\omega'} = \mathcal{F}^{-1} \left[\sum_{\sigma \in S} \alpha(\xi) \beta_{\sigma}(\xi/|\xi|) \widehat{\phi_{\omega'}} u_{\omega\sigma}(\xi) \right]$. Here \mathcal{F}^{-1} denotes the inverse Fourier transformation. $\alpha(t)$ is such a C^{∞} -function as $\alpha(t) \equiv 0$ near 0 and $\alpha(t) \equiv 1$ outside $|t| \leq 1$. The collection $\{\beta_{\sigma}(\xi)\}_{\sigma \in S}$ is a partition of unity subordinate to the covering S of S^{n-1} . And $\phi_{\omega'}$ is the smooth function stated in the definition of $H^{s,\infty}_{loc}(\omega \times \sigma)$. This mapping $(u_{\omega\sigma})_{\sigma} \mapsto v_{\omega'}$ is what we want. The ambiguity caused by selections of α , $\{\beta_{\sigma}\}$ and $\phi_{\omega'}$ is absorbed in $\mathcal{E}(\omega)$. Commutativity is a consequence of following ones.

Let $(u_{\omega \sigma})_{\sigma \in S}$ be an element in $Z(\omega \times S, M^s)$. Let ϕ be any smooth function in $C_0^{\infty}(\omega')$. Then

$$\phi\left(\mathcal{F}^{-1}\sum_{\tau\in\mathcal{S}}\beta_{\tau}\widehat{\phi_{\omega'}u_{\omega\tau}}-u_{\omega\sigma}\right)$$
$$=\phi\left(\mathcal{F}^{-1}\sum_{\tau\in\mathcal{S}}\beta_{\tau}\widehat{\phi_{\omega'}(u_{\omega\tau}-u_{\omega\sigma})}\right) \quad \text{mod. } \mathcal{E}(\omega),$$

and its Fourier transformation is rapidly decreasing so long as the direction of ξ lies in σ by Lemma 1. Therefore the first diagram is commutative. We can verify similarly that the second diagram is also commutative. Lemma 3 is thus proved.

Proof of Theorem 2. We can make use of the partition of unity not only on the base space Ω , but also on the fiber S^{n-1} as we stated in the proof of Lemma 3. This procedure is not difficult but the details are omitted here.

Remark 1. Arguments as to the change of the variables (see Hörmander [2]) show that $\Omega \times S^{n-1}$ should be regarded as the cosphere bundle $S^*\Omega$.

Remark 2. It is not clear for us whether the sheaf \mathcal{D}'/\mathcal{A} can be decomposed by the method of Fourier transformation (cf. Hörmander [2]).

D. FUJIWARA and K. UCHIYAMA

References

- [1] Hörmander, L.: Fourier integral operators. I. Acta Math., 127, 79–183 (1971).
- [2] —: Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients. Comm. Pure Appl. Math., 24, 671-704 (1971).
- [3] Sato, M., and M. Kashiwara: Structure of hyperfunctions. Sugaku no Ayumi, 15, 9-72 (1970) (in Japanese).
- [4] Sato, M., T. Kawai, and M. Kashiwara: Microfunctions and Pseudo-differential Equations. Proceedings of a Conference at Katata 1971. Lecture Notes in Math., 287, Springer (1973).