86. Oscillatory Integrals of Symbols of Pseudo-Differential Operators on R^{n} and Operators of Fredholm Type

By Hitoshi Kumano-go and Kazuo Taniguchi
Department of Mathematics, Osaka University

(Comm. by Kôsaku Yosida, m. J. A., June 12, 1973)

Introduction. In this paper we shall introduce the oscillatory integral of the form $O_{s}-\iint e^{-i x \cdot \xi} p(\xi, x) d x d \xi$ for a C^{∞}-function $p(\xi, x)$ of class \mathcal{A} (defined in Section 1), and by using this integral study the algebra of pseudo-differential operators of class $S_{\lambda, \rho, \delta}^{m}, 0 \leqq \delta \leqq \rho \leqq 1, \delta<1$, whose basic weight function $\lambda=\lambda(x, \xi)$ varies even in x and may increase in polynomial order.*) The Friedrichs part P_{F} of the operator P of class $S_{\lambda, \rho, \delta}^{m}$ will be defined as in Kumano-go [6]. Then, the L^{2} boundedness for the operator P of class $S_{2,, \rho, \delta}^{0}$ for $\delta<\rho$, can be proved by using P_{F} and the Calderon-Vaillancourt theorem in [1]. We have to note that all the results obtained there hold even for operator-valued symbols as in Grushin [3].

Next we shall give a sufficient condition in order that an operator of class $S_{\lambda, \rho, \delta}^{m}$ is Fredholm type. Finally we shall derive a similar inequality to that of Grushin [3] for an operator with polynomial coefficients and with mixed homogeneity in (x, ξ), and give a theorem on hypoellipticity at the origin.

All the theorems are stated without proofs and the detailed description will be published elsewhere.
§1. Oscillatory integrals.
Definition 1.1. We say that a C^{∞}-function $p(\xi, x)$ in $R_{\xi, x}^{2_{n}}$ belongs to a class $\mathcal{A}_{o}^{m},-\infty<m<\infty, 0 \leqq \delta<1$, when for any multi-index α, β we have

$$
\begin{equation*}
\left|p_{(\beta \beta}^{(\alpha)}(\xi, x)\right| \leqq C_{\alpha, \beta}\langle x\rangle^{l_{\beta}\langle\xi\rangle^{m+8|\beta|}} \tag{1.1}
\end{equation*}
$$

for constants $C_{\alpha, \beta}$ and l_{β}, where $p_{(\beta)}^{(\alpha)}=\partial_{\xi}^{\alpha} D_{x}^{\beta} p, D_{x_{j}}=-i \partial / \partial x_{j}, \partial_{\xi_{j}}=\partial / \partial \xi_{j}$, $j=1, \cdots, n,\langle x\rangle=\sqrt{1+|x|^{2}},\langle\xi\rangle=\sqrt{1+|\xi|^{2}}$. We set

(cf. [8]).
Definition 1.2. For a $p(\xi, x) \in \mathcal{A}$ we define the oscillatory integral $O_{s}[p]$ by
*) R. Beals and C. Fefferman have reported to us that they discovered a new class $S_{\varnothing, \phi}^{M, \phi_{i}}$ of pseudo-differential operators, which is defined by basic weight functions $\Phi(x, \xi)$ and $\phi(x, \xi)$ depending on x and ξ, and covers Hörmander's class $S_{\rho, \delta}^{m}$ in [4].

$$
\begin{align*}
O_{s}[p] & \equiv O_{s}-\iint e^{-i x \cdot \xi} p(\xi, x) d x d \xi \\
& =\lim _{\epsilon \rightarrow 0} \iint e^{-i x \cdot \xi} \chi_{s}(\xi, x) p(\xi, x) d x d \xi \tag{1.2}
\end{align*}
$$

where $d \xi=(2 \pi)^{-n} d \xi, x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}$ and $\chi_{\epsilon}(\xi, x)=\chi(\varepsilon \xi, \varepsilon x), 0<\varepsilon \leqq 1$, for a $\chi(\xi, x) \in \mathcal{S}$ (the class of rapidly decreasing functions of Schwartz) in $R_{\xi, x}^{2_{n}}$ such that $\chi(0,0)=1$.

Lemma 1.3. i) For a $p(\xi, x) \in \mathcal{A}_{\dot{\delta}}^{m}$ we choose positive integers l and l^{\prime} such that $-2 l(1-\delta)+m<-n$ and $-2 l^{\prime}+\operatorname{Max}_{|\beta| \leqq 2 l}\left\{l_{\beta}\right\}<-n$. Then we can write $O_{s}[p]$ as

$$
O_{s}[p]=\iint e^{-i x \cdot \xi}\langle x\rangle^{-2 l^{\prime}}\left\langle D_{\xi}\right\rangle^{2 l^{\prime}}\left\{\langle\xi\rangle^{-2 l}\left\langle D_{x}\right\rangle^{2 l} p(\xi, x)\right\} d x d \xi,
$$

and we have for $l_{0}=2\left(l+l^{\prime}\right)\left|O_{s}[p]\right| \leqq C|p|_{t_{0}}^{(m)}$ with a constant C independent of $p(\xi, x)$, where $|p|_{i_{0}}^{(m)}=\operatorname{Max}_{|\alpha+\beta| \leq l_{0}} \inf \left\{C_{\alpha, \beta}\right.$ of (1.1) $\}$.
ii) For $p_{j}(\xi, x) \in \mathcal{A}, j=1,2$, we have

$$
\begin{aligned}
& O_{s}\left[\partial_{\xi_{\xi}} p_{1} \cdot p_{2}\right]=O_{s}\left[p_{1}\left(i x_{j} p_{2}-\partial_{\xi_{\xi}} p_{2}\right)\right], \\
& O_{s}\left[\partial_{x_{j}} p_{1} \cdot p_{2}\right]=O_{s}\left[p_{1}\left(i \xi_{j} p_{2}-\partial_{x_{j}} p_{2}\right)\right] .
\end{aligned}
$$

§2. Class $S_{\lambda, \rho, \delta}^{m}$ of pseudo-differential operators.
Definition 2.1. We say that a C^{∞}-function $\lambda(x, \xi)$ is a basic weight function when $\lambda(x, \xi)$ satisfies for constants $A_{0}, A_{\alpha, \beta}$ and A_{1}

$$
\begin{array}{cc}
1 \leqq \lambda(x, \xi) \leqq A_{0}\langle x\rangle^{\gamma_{0}}\langle\xi\rangle & \left(\tau_{0} \geqq 0\right), \\
\left|\lambda_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq A_{\alpha, \beta} \lambda(x, \xi)^{1+\delta|\beta|-|\alpha|} & (0 \leqq \delta<1), \tag{2.2}\\
\lambda(x+y, \xi) \leqq A_{1}\langle y\rangle^{\gamma_{1}} \lambda(x, \xi) & \left(\tau_{1} \leqq 0\right) .
\end{array}
$$

Definition 2.2. We say that a C^{∞}-function $p(x, \xi)$ belongs to a class $S_{\lambda, \rho, \delta}^{m}, 0 \leqq \delta \leqq \rho \leqq 1$, when

$$
\begin{equation*}
\left.\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{\alpha, \beta} \lambda(x, \xi)^{m+\delta|\beta|-\rho|\alpha|} \quad \text { (cf. [4] }\right) \tag{2.4}
\end{equation*}
$$

and the pseudo-differential operator $P=p\left(X, D_{x}\right)$ is defined by

$$
\begin{equation*}
P u(x)=\int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi \quad \text { for } u \in \mathcal{S} \tag{2.5}
\end{equation*}
$$

where $\hat{u}(\xi)=\int e^{-i x^{\prime} \cdot \xi} u\left(x^{\prime}\right) d x^{\prime}$ is the Fourier transform of $u \in \mathcal{S}$.
Remark 1°. $S_{\lambda, \rho, \delta}^{m}$ makes a Fréchet space by semi-norms $|p|_{l}^{(m)}$, $l=0,1,2, \cdots$ defined by

$$
|p|_{i}^{(m)}=\operatorname{Max}_{|\alpha+\beta| \leq l} \sup _{(x, \xi)}\left\{\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \lambda(x, \xi)^{-m-\delta|\beta|+\rho|\alpha|}\right\} .
$$

2°. It is easy to see that P is a continuous map of \mathcal{S} into \mathcal{S}, so that from Theorem $2.5 P$ can be extended uniquely to the map of \mathcal{S}^{\prime} into \mathcal{S}^{\prime} by $(P u, v)=\left(u, P^{(*)} v\right)$ for $u \in \mathcal{S}^{\prime}, v \in \mathcal{S}$.

Theorem 2.3. Let $P_{j}=p_{j}\left(X, D_{x}\right) \in S_{\lambda, \rho, \delta}^{m_{j}}, j=1,2$. Then, $P=P_{1} P_{2}$ $\in S_{\lambda, \rho, \delta}^{m_{1}+m_{2}}$ and setting

$$
\left\{\begin{array}{l}
p_{\alpha}(x, \xi)=p_{1}^{(\alpha)}(x, \xi) p_{2(\alpha)}(x, \xi) \quad\left(\in S_{\lambda, \rho, \delta}^{m_{1}+m_{2}-(\rho-\delta)|\alpha|}\right), \\
r_{r, \theta}(x, \xi)=O_{s}-\iint e^{-i y \cdot \eta} p_{1}^{(\gamma)}(x, \xi+\theta \eta) p_{2(\gamma)}(x+y, \xi) d y d \eta
\end{array}\right.
$$

we have for any integer $N>0$

$$
\begin{equation*}
\sigma(P)(x, \xi)=\sum_{|\alpha|<N} \frac{1}{\alpha!} p_{a}(x, \xi)+N \sum_{|\gamma|=N} \int_{0}^{1} \frac{(1-\theta)^{N-1}}{\gamma!} \gamma_{\gamma, \theta}(x, \xi) d \theta . \tag{2.6}
\end{equation*}
$$

The set $\left\{\gamma_{r, \theta}(x, \xi)\right\}_{|\theta| \leq 1}$ is bounded in $S_{\lambda, \rho, \delta}^{m_{1}+m_{2}-(\rho-\delta)|r|}$.
Lemma 2.4. Define a class $S_{\lambda, \rho, o_{i}^{\prime}}^{m, m^{\prime}}$ of double symbols $p\left(\xi, x^{\prime}, \xi^{\prime}\right)$ by $\mid p_{(\beta)^{\left(\alpha, \alpha^{\prime}\right)}}^{\left(\xi, x^{\prime}, \xi^{\prime}\right) \mid \leqq C_{\alpha, \alpha^{\prime}, \beta} \lambda\left(x^{\prime}, \xi\right)^{m-\rho|\alpha|}\left(\lambda\left(x^{\prime}, \xi\right)+\lambda\left(x^{\prime}, \xi^{\prime}\right)\right)^{\delta|\beta|} \lambda\left(x^{\prime}, \xi^{\prime}\right)^{m^{\prime}-\rho\left|\alpha^{\prime}\right|} . ~ . ~ . ~ . ~}$
Then, the operator $P=p\left(D_{x}, X^{\prime}, D_{x^{\prime}}\right)$ defined by

$$
\widehat{P u}(\xi)=O_{s}-\iint e^{-i x^{\prime} \cdot\left(\xi-\xi^{\prime}\right)} p\left(\xi, x^{\prime}, \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} d x^{\prime} \quad \text { for } u \in \mathcal{S}
$$

belongs to $S_{\lambda, o, c_{i}^{\prime}}^{m+m^{\prime}}$, and setting

$$
\left\{\begin{array}{l}
p_{\alpha}(x, \xi)=p_{(\alpha)}^{(\alpha, 0)}(\xi, x, \xi) \quad\left(\in S_{\lambda, \rho, \delta}^{m+m^{\prime}-(\rho-\delta)|\alpha|}\right), \\
r_{r, \theta}(x, \xi)=O_{s}-\iint e^{-i y \cdot \eta} p_{(r \gamma)}^{(r, 0)}(\xi+\theta \eta, x+y, \xi) d y d \eta
\end{array}\right.
$$

we can write $\sigma(P)(x, \xi)$ in the form (2.6) for any $N>0$. The set $\left\{r_{r, \theta}(x, \xi)\right\}_{|\theta| \leq 1}$ is bounded in $S_{\lambda, \rho, \delta, \delta}^{m+m^{\prime}-(\rho-\delta)|r|}$.

Theorem 2.5. For $P=p\left(X, D_{x}\right) \in S_{\lambda, \rho, \delta}^{m}$ the operator $P^{(*)}$ defined by $(P u, v)=\left(u, P^{(*)} v\right)$ for $u, v \in \mathcal{S}$ belongs to $S_{\lambda, \rho, \delta}^{m}$, and setting

$$
\left\{\begin{array}{l}
p_{\alpha}^{(*)}(x, \xi)=(-1)^{|\alpha|} \overline{p_{(\alpha)}^{(\alpha)}(x, \xi)} \quad\left(\in S_{2, \rho, \delta}^{m-(\rho-\delta)|\alpha|}\right), \\
r_{r, \theta}^{* *)}(x, \xi)=O_{s}-\iint e^{i y \cdot \eta}(-1)^{|r|} \overline{p_{(\gamma)}^{(r)}(x+y, \xi+\theta \eta)} d y d \eta
\end{array}\right.
$$

we have for any $N>0$

$$
\sigma\left(P^{(*)}\right)(x, \xi)=\sum_{|\alpha|<N} \frac{1}{a!} p_{\alpha}^{(*)}(x, \xi)+N \sum_{|r|=N} \int_{0}^{1} \frac{(1-\theta)^{N-1}}{\gamma!} r_{r, \theta}^{(*)}(x, \xi) d \theta
$$

The set $\left\{r_{r, \theta}^{(*)}(x, \xi)\right\}_{|\theta| \leqq 1}$ is bounded in $S_{\lambda, \rho, \delta, \delta}^{m-(\rho)-\delta|r|}$.
Let $q(\sigma)$ be a C^{∞} - and even-function such that $\int q(\sigma)^{2} d \sigma=1$ and $\operatorname{supp} q \subset\left\{\sigma \in R^{n} ;|\sigma| \leqq 1\right\}$ and set

$$
F(x, \xi ; \zeta)=\lambda(x, \xi)^{-n \tau / 2} q\left((\zeta-\xi) / \lambda(x, \xi)^{\tau}\right) \quad \text { for } \tau=(\rho+\delta) / 2 .
$$

Theorem 2.6. For $P=p\left(X, D_{x}\right) \in S_{\lambda, \rho, \delta}^{m}(\delta<\rho)$ define the Friedrichs part $P_{F}=p_{F}\left(D_{x}, X^{\prime}, D_{x^{\prime}}\right)$ by

$$
p_{F}\left(\xi, x^{\prime}, \xi^{\prime}\right)=\int F\left(x^{\prime}, \xi ; \zeta\right) p\left(x^{\prime}, \zeta\right) F\left(x^{\prime}, \xi^{\prime} ; \zeta\right) d \zeta
$$

Then, we have $P_{F} \in S_{\lambda, \rho, \delta}^{m}$ and $P-P_{F} \in S_{\lambda, \rho, \delta}^{m-(\rho-\delta)}$, and

$$
\sigma\left(P_{F}\right)(x, \xi) \sim p(x, \xi)+\sum_{\alpha, \beta, r} \Psi_{\alpha, \beta, r}(x, \xi) p_{(\beta)}^{(\alpha)}(x, \xi),
$$

where $\Psi_{\alpha, \beta, \gamma}(x, \xi) \in S_{\lambda, 1, \delta}^{\tau(|\alpha|-|\beta|)-(\rho-\delta| | r \mid / 2}$ and the summation is taken over (α, β, γ) such that $-(\rho-\delta)|\alpha+\beta+\gamma| / 2 \leqq-(\rho-\delta)$, i.e., $|\alpha+\beta+\gamma| \geqq 2$. Moreover, if $p(x, \xi)$ is real valued and non-negative, we have

$$
\left(P_{F} u, v\right)=\left(u, P_{F} v\right) \quad \text { and } \quad\left(P_{F} u, u\right) \geqq 0 \quad \text { for } u, v \in \mathcal{S} .
$$

Theorem 2.7. Let $P=p\left(X, D_{x}\right) \in S_{\lambda, \rho, \delta}^{0}(\delta<\rho)$. Then, we have for some l and a constant C

$$
\|P u\|_{L^{2}} \leqq\left. C|p|\right|_{i} ^{(0)}\|u\|_{L^{2}} \quad \text { for } u \in L^{2}\left(R^{n}\right) .
$$

§3. Operators of Fredholm type. In what follows we assume that

$$
\begin{equation*}
c_{0}\langle\xi\rangle^{a_{0}} \leqq \lambda(x, \xi) \quad \text { for some } 0<a_{0} \leqq 1,0<c_{0} . \tag{3.1}
\end{equation*}
$$

Consider $P=p\left(X, D_{x}\right) \in S_{\lambda, \rho, \delta}^{m}$ as the closed operator of $L^{2}=L^{2}\left(R^{n}\right)$ into itself with the domain $\mathscr{D}(P)=\left\{u \in L^{2} ; P u \in L^{2}\right\}$.

We say that $p(x, \xi) \in S_{\lambda, \rho, \delta}^{m}$ is slowly varying if we have (2.4) for a bounded function $C_{\alpha, \beta}(x)$ such that $C_{\alpha, \beta}(x) \rightarrow 0$ as $|x| \rightarrow \infty$ for $\beta \neq 0$ (cf. [2]). Then we have

Theorem 3.1. Let $P=p\left(X, D_{x}\right) \in S_{\lambda, \rho, \delta}^{m}$ for $m \geqq 0$ and $\delta<\rho$. Suppose that $p(x, \xi)$ is slowly varying and satisfies conditions:

$$
\left\{\begin{array}{l}
\left|p_{(\beta)}^{(\alpha)}(x, \xi) p(x, \xi)^{-1}\right| \leqq C_{\alpha, \beta}^{\prime}(x) \lambda(x, \xi)^{\Delta|\beta|-\rho|\alpha|} \\
\left.p(x, \xi) \mid \geqq C_{0} \lambda(x, \xi)^{m \tau} \quad 0<C_{0}, 0 \leqq \tau \leqq 1\right)
\end{array}\right.
$$

for large $|x|+|\xi|$, where $C_{\alpha, \beta}^{\prime}(x)$ are bounded functions such that $C_{\alpha, \beta}^{\prime}(x)$ $\rightarrow 0$ as $|x| \rightarrow \infty$ for $\beta \neq 0$. Then, P is Fredholm type in L^{2}, and there exist parametrices Q and Q^{\prime} in $S_{\lambda, \rho, \delta}^{-m \tau}$ such that
(3.2) $\quad Q P=I+K$ and $Q^{\prime} P^{(*)}=I+K^{\prime}$,
where K and K^{\prime} belong to $S_{\lambda,,, \delta \delta}^{-\infty}$ and are compact in L^{2}. (cf. [4], [7], [9])
Remark. When $\lambda(x, \xi) \rightarrow \infty$ as $|x| \rightarrow \infty$, symbols of class $S_{\lambda, \rho, \delta}^{m}(\delta<\rho)$ are always slowly varying in $S_{\lambda, \rho, \delta^{\prime}}^{m}$, for $\delta<\delta^{\prime}<\rho$.
§4. Examples. Let $\mathfrak{m}=\left(m_{1}, \cdots, m_{n}, m_{1}^{\prime}, \cdots, m_{k}^{\prime}\right)$ be a multi-index of positive integers m_{j} and m_{l}^{\prime}. Consider an operator $L\left(x, \tilde{y}, D_{x}, D_{y}\right)$ in $R_{x}^{n} \times R_{y}^{k}$ with polynomial coefficients and of the form

$$
\begin{equation*}
L(x, \tilde{y}, \xi, \eta)=\sum_{|\alpha: \mathrm{m}| \leq 1} a_{\alpha, \gamma}(x, \tilde{y})^{r}(\xi, \eta)^{\alpha}, \tag{4.1}
\end{equation*}
$$

and set

$$
\begin{equation*}
L_{0}(x, \tilde{y}, \xi, \eta)=\sum_{|\alpha: m|=1} a_{\alpha, r}(x, \tilde{y})^{r}(\xi, \eta)^{\alpha}, \tag{4.2}
\end{equation*}
$$

where $y=(\widetilde{y}, \widetilde{\tilde{y}}), \widetilde{y}=\left(y_{1}, \cdots, y_{s}\right), \widetilde{\tilde{y}}=\left(y_{s+1}, \cdots, y_{k}\right)$ for $s \leqq k$,

$$
\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}, \alpha_{1}^{\prime}, \cdots, \alpha_{k}^{\prime}\right), \gamma=\left(\gamma_{1}, \cdots, \gamma_{n}, \gamma_{1}^{\prime}, \cdots, \gamma_{s}^{\prime}, 0, \cdots, 0\right),
$$

$|\alpha: \mathfrak{m}|=\alpha_{1} / m_{1}+\cdots+\alpha_{n} / m_{n}+\alpha_{1}^{\prime} / m_{1}^{\prime}+\cdots+\alpha_{k}^{\prime} / m_{k}^{\prime}$,
$(x, \tilde{y})^{r}=x_{1}^{\gamma_{1}} \cdots x_{n}^{\gamma_{n}} y_{1}^{\gamma_{1}^{\prime}} \cdots y_{s}^{\gamma_{s}^{\prime}},(\xi, \eta)^{\alpha}=\xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}} \eta_{1}^{\alpha_{1}^{\alpha_{1}}} \cdots \eta_{k}^{\alpha_{k}^{\prime}}$.
Now setting $m=\operatorname{Max}\left\{m_{j}, m_{l}^{\prime}\right\}$ we assume that there exist two real vectors $\rho=\left(\rho_{1}, \cdots, \rho_{n}, \rho_{1}^{\prime}, \cdots, \rho_{k}^{\prime}\right), \sigma=\left(\sigma_{1}, \cdots, \sigma_{n}, \sigma_{1}^{\prime}, \cdots, \sigma_{s}^{\prime}, 0, \cdots, 0\right)$ such that
(i) $\rho_{j}=\sigma_{j}=m / m_{j}, \quad j=1, \cdots, n$,
(ii) $\quad \rho_{j}^{\prime}>\sigma_{j}^{\prime} \geqq 0, \quad \rho_{j}^{\prime} m_{j}^{\prime} \geqq m, \quad j=1, \cdots, k$,
and
(4.4)

$$
L\left(t^{-o}(x, \tilde{y}), t^{o}(\xi, \eta)\right)=t^{m} L(x, \tilde{y}, \xi, \eta) \quad \text { for } t>0
$$

where $t^{-\sigma}(x, \tilde{y})=\left(t^{-\sigma_{1}} x_{1}, \cdots, t^{-\sigma_{n}} x_{n}, t^{-\sigma_{1}^{\prime}} y_{1}, \cdots, t^{-\sigma_{s}^{\prime}} y_{s}\right)$,

$$
t^{\rho}(\xi, \eta)=\left(t^{\rho_{1}} \xi_{1}, \cdots, t^{\rho_{n}} \xi_{n}, t^{\rho_{1}^{\prime}} \eta_{1}, \cdots, t^{\rho_{k}^{\prime}} \eta_{k}\right)
$$

and assume that

$$
\begin{equation*}
L_{0}(x, \tilde{y}, \xi, \eta) \neq 0 \quad \text { for } \quad|x|+|\tilde{y}| \neq 0 \quad \text { and } \quad(\xi, \eta) \neq 0, \tag{4.5}
\end{equation*}
$$

which means that $L(x, \tilde{y}, \xi, \eta)$ is semi-elliptic for $|x|+|\tilde{y}| \neq 0$. Then from (4.3)-(4.5) we have for a constant $C>0$

$$
C^{-1}\left|L_{0}(x, \tilde{y}, \xi, \eta)\right| \leqq\left\{\sum_{j=1}^{n}\left|\xi_{j}\right|^{m_{j}}+\sum_{j=1}^{n}|x, \tilde{y}|_{\sigma}^{\left(\sigma_{j}^{\prime} m_{j}^{\prime}-m\right)}\left|\eta_{j}\right|^{\mid m_{j}^{\prime}}\right\} \leqq C\left|L_{0}(x, \tilde{y}, \xi, \eta)\right|,
$$

where

$$
|x, \widetilde{y}|_{\sigma}=\left\{\sum_{j=1}^{n}\left|x_{j}\right|^{1 / \sigma_{j}}+\sum_{j=1}^{s}\left|y_{j}\right|^{1 / \sigma_{j}^{\prime}}\right\} .
$$

Using this we get a basic weight function $\lambda_{h}(x, \xi)(|\eta|=1)$ with parameter $h=(\tilde{y}, \eta)$ by $\lambda_{h}(x, \xi)=\left\{1+|L(x, \tilde{y}, \xi, \eta)|^{2}\right\}^{1 / 2 m}(|\eta|=1)$ for $\delta=0$ and a_{0} $=\operatorname{Min}_{1 \leqq j \leqq n}\left\{m_{j} / m\right\}$. Setting $p_{h}(x, \xi)=L(x, \tilde{y}, \xi, \eta)$ we can check that $p_{h}(x, \xi) \in S_{\lambda_{h}, 1,0}^{m}$ and satisfies the conditions of Theorem 3.1 for $\tau=1$ and for large $|x|+|\tilde{y}|+|\xi|$. Moreover, we can replace $C_{\alpha, \beta}(x)$ by bounded functions $C_{\alpha, \beta}(x, \tilde{y})$ such that

$$
\begin{equation*}
C_{\alpha, \beta}(x, \tilde{y}) \rightarrow 0 \quad \text { as } \quad|x|+|\tilde{y}| \rightarrow \infty \quad \text { for } \beta \neq 0 . \tag{4.6}
\end{equation*}
$$

Then we have for a compact operator $K_{h}\left(X, D_{x}\right)$
(4.7) $\|u\|_{L_{x}^{2}} \leqq C\left\|L\left(X, \tilde{y}, D_{x}, \eta\right) u\right\|_{L_{x}^{2}}+\left\|K_{h}\left(X, D_{x}\right) u\right\|_{L_{x}^{2}} \quad$ for $u \in \mathcal{S}_{x}$.

Moreover, if we add an assumption that the equation $L\left(X, \tilde{y}, D_{x}, \eta\right) u(x)$ $=0(|\eta|=1)$ has no non-trivial solution in \mathcal{S}_{x}, then by using (4.6) and the relation: $t^{m}\left\|L\left(X, \tilde{y}, D_{x}, \eta\right) u\right\|_{L_{x}^{2}}=\left\|L\left(t^{-\sigma}(X, \tilde{y}), t^{\rho}\left(D_{x}, \eta\right)\right) u\right\|_{L_{x}^{2}}=t^{\left(\Sigma_{\left.j=1 \sigma \sigma^{j}\right)}^{n} / 2\right.}$ $\left\|L\left(X, t^{-\sigma^{\prime}} \tilde{y}, D_{x}, t^{\sigma^{\prime}} \eta\right) v\right\|_{L_{x}^{2}}$ for $v(x)=u\left(t^{\sigma_{1}} x_{1}, \cdots, t^{\sigma_{n}} x_{n}\right)$ we have (4.8) $|\eta|_{\rho^{\prime}, ~}^{m} u\left\|_{L_{x}^{2}} \leqq C^{\prime}\right\| L\left(X, \tilde{y}, D_{x}, \eta\right) u \|_{L_{x}^{2}} \quad$ for $u \in \mathcal{S}_{x}$ and $\eta \in R^{k}$, where $\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \cdots, \sigma_{s}^{\prime}\right), \rho^{\prime}=\left(\rho_{1}^{\prime}, \cdots, \rho_{k}^{\prime}\right)$ and $|\eta|_{\rho^{\prime}}=\sum_{j=1}^{k}\left|\eta_{j}\right|^{1 / \rho_{j}^{\prime}}$. Finally we have

Theorem 4.1. The operator $L\left(x, \tilde{y}, D_{x}, D_{y}\right)$ which satisfies (4.4) and (4.5) is hypoelliptic at the origin, if (and only if when \tilde{y} does not appear) $L\left(X, \tilde{y}, D_{x}, \eta\right) u=0$ has no non-trivial solution in \mathcal{S}_{x} for $|\eta|=1$ and $\operatorname{Max}_{1 \leqq j \leq k}\left\{\sigma_{j}^{\prime}\right\}<\operatorname{Min}_{1 \leqq j, l \leqq k}\left\{m_{j}^{\prime} \rho_{j}^{\prime} / m_{l}^{\prime}\right\}$.

Example $1^{\circ} . L_{ \pm}\left(x, D_{x}, D_{y}\right)=D_{x} \pm i x D_{y}^{2}$ in $R_{x}^{1} \times R_{y}^{1}$ (cf. [5]).

$$
\mathfrak{m}=(1,2), \quad m=2, \quad \rho_{1}=\sigma_{1}=2, \quad \rho_{2}=2, \quad \sigma_{2}=0 .
$$

In this case $L_{+}\left(X, D_{x}, \pm 1\right) u=0$ has no non-trivial solution in \mathcal{S}_{x} and $L_{-}\left(X, D_{x}, \pm 1\right) u=0$ has non-trivial solution $e^{-x^{2 / 2}} \in \mathcal{S}_{x}$.
2°. $L_{k}\left(x, D_{x}, D_{y}\right)=D_{x}+i x^{k} D_{y}$ in $R_{x}^{1} \times R_{y}^{1}$ (cf. [10]). $\mathfrak{m}=(1,1), m=1$, $\rho_{1}=\sigma_{1}=1, \rho_{2}=k+1, \sigma_{2}=0$. In this case $L_{k}\left(X, D_{x}, \pm 1\right) u=0$ has nontrivial solution in \mathcal{S}_{x} for even k and $L_{k}\left(X, D_{x},-1\right) u=0$ has non-trivial solution $e^{-x^{k+1 /(k+1)}}$ for odd k.

References

[1] A. P. Calderon and R. Vaillancourt: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. USA, 69, 1185-1187 (1972).
[2] V. V. Grushin: Pseudo-differential operators on R^{n} with bounded symbols. Functional Anal. Appl., 4, 202-212 (1970).
[3] -: Hypoelliptic differential equations and pseudo-differential operators with operator-valued symbols. Mat. Sb., 88(130), 504-521 (1972) (in Russian).
[4] L. Hörmander: Pseudo-differential operators and hypoelliptic equations. Proc. Symposium on Singular Integrals. Amer. Math. Soc., 10, 138-183 (1967).
[5] Y. Kannai: An unsolvable hypoelliptic differential operator. Israel J. Math., 9, 306-315 (1971).
[6] H. Kumano-go: Algebras of pseudo-differential operators. J. Fac. Sci. Univ. Tokyo, 17, 31-51 (1970).
[7] -: On the index of hypoelliptic pseudo-differential operators on R^{n}. Proc. Japan Acad., 48, 402-407 (1972).
[8] -: Oscillatory integrals of symbols of pseudo-differential operators and the local solvability theorem of Nirenberg and Treves. Katata Simposium on Partial Differential Equation, pp. 166-191 (1972).
[9] H. Kumano-go and C. Tsutsumi: Complex powers of hypoelliptic pseudodifferential operators with applications (to appear in Osaka J. Math., 10 (1973)) .
[10] S. Mizohata: Solutions nulles et solutions non analytiques. J. Math. Kyoto Univ., 1, 271-302 (1962).

