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Osaka Technical College

(Comm. by Kinjir6 KUNU(I, M. Z. A., Nov. 12, 1973)

Introduction. In the preceding paper [1], we treated some quan-
tities of a bounded domain in R which we called polyharmonic inner
radii. In the present paper, we deal with the similar quantities of a
bounded domain in R which is bounded by finite number of regular
surfaces. G. P61ya and G. Szeg5 [2] defined the inner radius of a
bounded domain using the Green’s function of the domain relative
to the Laplace’s equation Au--0 and they calculated the inner radius
of a nearly spherical domain. The aim of this paper is to extend the
above results. In the first place, we obtain the Green’s function of
a sphere relative to the n-harmonic equation iu--0 and define the
n-harmonic inner radius of a bounded domain. In the next place, we
compute the n-harmonic inner radius of a nearly spherical domain and
it is noticeable that it is monotonously decreasing with respect to
integer n.

1o Inner radii associated with polyharmonic equations.

We use the following notations in this section. Let V be a bound-
ed domain in R, S the surface of V, P0 an inner point of V, P the
variable point in V and r the distance from P0 to P.

Definition 1. If a function u(P) satisfies the following two con-
ditions, u(P) is called the Green’s function of V with the pole P0 rela-
tive to the n-harmonic equation Au=0.

(1) In a neighborhood of Po, u(P) has the form
u(P) r-+ h(P),

where ha(P) satisfies the equation z/hn=0 in V and all its derivatives
of order <= 2n-- 1 are continuous in V+S.

(2) All the normal derivatives of order=<n-1 of u(P) vanish on
S.

We can find the Green’s function relative to the equation Au-0
for a sphere in the explicit form.

Theorem 1. Let V be the sphere of radius R with the center O.
If Poq:O, denoting the distance from 0 to Po, P’o the inversion of P0
with respect to S and ’ the distance from Pg to P, the Green’s function
G(P, Po) of V with the-.pole P0 elative to the equation z/u=0 is as
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follows,
1 RG(P, Po)=
r pr’

(2--2) ren-2-2 f2_ p2 r’2

22-2 R= (k-- I)
(n2).

And Po=O, we pu pr’=R in $he above equalities.
Proof. The case o n= I is well known. Obviously the unction

G,(P, Po) (n2) satisfies the condition (1). We write the unction
G,(P, P0) in the orm

1-- 1-

and we put

x=/.
Then x is equal to 1 on S, and we can rewrite

Rr’-{2pr’ }"G(P, Po) (1 ) (2k 2)
2-k= (k-)

( x)

If we put
(2k--2) (1-- x)f(x) (1--)2--= 22: #21)

then
f)(1) 0, 0an--1.

From this the condition (2) follows. The theorem is thus proved.
Given a domain V and an inner point P0 of V, G. PSlya and G.

Szeg5 [2] defined the inner radius reo of V with respect to the point Po
as follows; when the Green’s function G(P, Po) of V with the pole P0
relative to the equation u=0 is

G(P, Po)- + h(P),

they put
1 --h(Po).

Now we define the n-harmonic inner radius of a domain V associ-
ated with n-harmonic equation u=0.

Definition 2. If the Green’s function of a domain V with the pole

P0 relative to the equation u=0 is
r- +h(P),

then we put
1 --h(Po),
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(2n--4) -o,--Ih(Po)! (n=>2),
2-(n 1) (n--2)

we call ro, the n-harmonic inner radius of the domain V with respect
to the point P0.

Remark. When the domain V is the sphere of radius R, we com-
pure the ordinary inner radius and the n-harmonic inner radius of the
sphere with respect to the point P0, which are the same value

R_p
R

2or an arbitrary integer n.
2. Inner radii o2 a nearly spherical domain.
In this section, we consider the radii of a nearly spherical domain

defined in the ormer section.
Definition 3 Let

( 1 ) r-- 1 + p(O, 9)
be the equation of the surface of a domain in spherical coordinates r,
0 and 9, where p(O, 9) represents the infinitesimal variation of the unit
sphere. We call the domain bounded by (1) the nearly spherical domain.

We consider the series

( 2 ) p(O, ) , X(t?, ),
k=0

where the term X(O,) represents a surface harmonic of degree k
which has infinitesimal coefficients of the first order.

Terms of higher infinitesimal than the second order are neglected
in all the discussions of this section.

Lemma. When the surface harmonic X(O, 9) in the series (2) is
X(O, ) (a cos 9+ b sin 9,) sin 0 + c cos 0,

neglecting terms of higher than the first order, the position of the
centroid C of the nearly spherical domain r<l+p(0, ) is (a, b, c).

This lemma was given by G. PSlya and G. Szeg5 [2] and they
obtained the ordinary inner radius re of the nearly spherical domain
with respect to the centroid C as follows,

( 3 ) r 1 + X0+ [X(0, )]dS--.’ (k + 1) [X(0, )]dS

where the integral is extended over the surface of the unit sphere of
which dS is an element. As an extention of (3), we prove the follow-
ing theorem.

Theorem 2. For an arbitrary positive integer n, the n-harmonic
inner radius rv, of the nearly spherical domain r<l+p(O, 9) with
respect to the centroid C is

(4) rc,=l+X0+-:- [X(e,)]dS-, (nk-n+2) [X(,)]dS
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Consequently, rc, decreases monotonously with respect to n.
Proof. We seek the Green’s unction G(P, C) of the nearly

spherical domain with the pole C relative to the equation Au=0 in the
orm

1 {r,2n_4(r,_1)2_ 22-2k(2k--’ 2)! r,2n_2_e(r,2_l)}G(P, C)=-- = (k--l).
+ p(r, , ) + q(r, , ),

p(r, , )= r+*S*)(, ),
k=O i=O

q(r, , )= Z r+*T*)(, ).
k=O i=O

Here r’ is the distance from C(a, b,) to the point P, S*)(8,) and
T*)(, ) are surface harmonics of degree k with first and second order
coefficients respectively. The n-harmonic inner radius rc. is deter-
mined by

(2n-4)
2-(n 1) (n--2)

(2n-4)(-)-
2’-(- 1) (-) +(’ o, fo) + q(f, o,, ,),

where , 0o and p0 are spherical eoordinates of the eentroid . And so
we have

(g) ’- 1+(1)- 2’-(--1) (--2) {S+(S") + T}(2-)
where he term (S) has to be aken a . If denotes he normal
to the boundary of the nearly sherieal domain, he condition

0G 0

on the boundary can be relaeed by

Le r be the variable angle between the radii and . In view of
lemma, we have

f cos r=X(O, ).
Now the boundary conditions are

0 0"+l rr .p(1, 8, ) + p(8, ) r p(1, O, ) + q(1, , )=0

(6)

ar_,p(1, O, 9) +p(O, 9), ar,i,p(1, O, 9)+ r, q(1, O, 9)

(2n--2)
2(n 1)

[p(0, ) r0 cos 7},
rn_ p(1, 0, 9) + p(8, 9)

3r
p(1, 8, 9) + 3rn_ q(1, 8, 9)

O<=a<=n--3,
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(2n--2) [(n + n--6){p(, )--r0 cos ’} + 2r] sin ’]
2/(n-- 1)

+ (2n--2)! [p(t, )--r0 cos ’}.
2-(n 1)

The first order terms yield
3" .p(1, t, ?)=0 0_<a_<n-2,

(7) r
3- (2n-2)p(, , )= [(o, )-r0 cos }.
3r- 2-(n 1)

So that
(2n- 2) (r- 1)- X0+, rX(t?, )( 8 p(r, , )=

2-{(n- 1)!}
in particular

( 9 ) S0) (_ 1)_ (2n- 2) X0, (rSi)) 0.
2-{(n- 1)

We consider the second order terms. The mean value of the function
q(r, , ) on the surface of the unit sphere is equal to 5rUT). By
the first equations of (6) and (7) we have

3" q(1, 8, )=0 0an-3,r
so that it must be the form

(10) rUT) =(r-1)-(Ar + B),
t=O

where A and B are constants. Comparing the constant coefficients of
q(r, , ) and (10), we obtain
(11) T) (-- 1)-=B.
We take now the mean values o second order terms of (6) and find

(2n--2)! {X]+ 1 ; dS}A +B 2-(n 1) (n--2)
[X(O, )]

(n+ 2)A + (n-- 2)B

2’-{(n-(2n-2)[)} ( I }(n--3n+ 6) X]+ [X(O, )]dS

+ 4n [X(O, )]dS-- [X,(0, )]gs

Consequently

B= (2n--2)[[2’-{(n1) [} { I }(--n+2) X]+ 1 [x(, e)]dS
(12)

+n k
_

[X(,.e)]dS
:

[x(e, )]dS 1

By virtue of (5), (9), (11) and (12) we find

+ x0+ [x(o, )]dS- (n-n+ 2) [X(e, )]dZ

This is the desired equation.



No. 9] Some Radii of Solid 699

[1]

[2]

[3]

References

S. Ogawa, T. Kayano, and I. Yotsuya: Some radii associated with poly-
harmonic equations. Proc. Japan Acad., 47(1), 44-49 (1971).

G. PSlya and G. SzegS" Isoperimetric Inequalities in Mathematical Phisics.
Princeton Univ. (1951).

I. N. Vekua: New Methods for Solving Elliptic Equations. North-Holland,
Amsterdam (1967).


