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152. Some Radii of a Solid Associated with
Polyharmonic Equations

By Ichizo YoTsuyA
Osaka Technical College

(Comm. by Kinjiré6 KUNUGI, M. J. A., Nov. 12, 1973)

Introduction. In the preceding paper [1], we treated some quan-
tities of a bounded domain in R? which we called polyharmonic inner
radii. In the present paper, we deal with the similar quantities of a
bounded domain in R?® which is bounded by finite number of regular
surfaces. G. Pélya and G. Szeg6 [2] defined the inner radius of a
bounded domain using the Green’s function of the domain relative
to the Laplace’s equation Ju=0 and they calculated the inner radius
of a nearly spherical domain. The aim of this paper is to extend the
above results. In the first place, we obtain the Green’s function of
a sphere relative to the n-harmonic equation 4"u=0 and define the
n-harmonic inner radius of a bounded domain. In the next place, we
compute the n-harmonic inner radius of a nearly spherical domain and
it is noticeable that it is monotonously decreasing with respect to
integer n.

1. Inner radii associated with polyharmonic equations.

We use the following notations in this section. Let V be a bound-
ed domain in R?, S the surface of V, P, an inner point of V, P the
variable point in V and r the distance from P, to P.

Definition 1. If a function u(P) satisfies the following two con-
ditions, u(P) is called the Green’s function of V' with the pole P, rela-
tive to the n-harmonic equation 4*u=0.

(1) In a neighborhood of P,, u(P) has the form

w(P)=r""34h,(P),
where h,(P) satisfies the equation 4*k,=0 in V and all its derivatives
of order<2n—1 are continuous in V+S8.

(2) All the normal derivatives of order<n—1 of u(P) vanish on
S.

We can find the Green’s function relative to the equation 4"u=0
for a sphere in the explicit form.

Theorem 1. Let V be the sphere of radius R with the center O.
If P,#0, denoting p the distance from O to P,, P; the inversion of P,
with respect to S and v’ the distance from P} to P, the Green’s function
G, (P, Py) of V with the pole P, relative to the equation 4"u=0 is as
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follows,
Gp,Py=1_E
T /A
G, (P,P)=—_F {1‘2"‘4<1'——ﬁr')2
201’ R
_5 (2k—2)! 2n—2k—2< e P /z)k}
AT "R

(n=2).
And Py=0, we put pr'=R* in the above equalities.
Proof. The case of n=1 is well known. Obviously the function
G,.(P,P) (n=2) satisfies the condition (1). We write the function
G,(P, Py in the form

G.(P, P)= —R;”:;_,Z [(1—%)2— k_: zzk-(zzkkg?: )_!1) ! {1_ (%)T]’

= L’“’)’,
v (R?‘
Then z is equal to 1 on S, and we can rewrite
Gn(P, Po - Ryn-2 {(1_\/%’)2_%1 (2]0-—-2) ! {1_x)k}.

and we put

201 f= 22 (k—1)!
If we put
—(1 — a7 )2 — = (Zk—Z)! PRY
Sal@=01—v2) 2 T o)1 1—2),
then

Ja2(1)=0, 0asn—1.
From this the condition (2) follows. The theorem is thus proved.
Given a domain V and an inner point P, of V, G. Pélya and G.
Szeg6 [2] defined the inner radius rp, of V with respect to the point P,
as follows; when the Green’s function G(P, P,) of V with the pole P,
relative to the equation 4u=0 is

G(P, P0)=—117+h(P),

they put
1
7P,
Now we define the n-harmonic inner radius of a domain V associ-
ated with n-harmonic equation 4%u=0.
Definition 2. If the Green’s function of a domain V with the pole
P, relative to the equation 4*u=0 is
7*%=3 4 h,(P),

= —h(P,).

then we put
1

7‘1’0,1

= hl(Po):
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(27&—4) ! 2n—3 ___
22”_3(n_l) ! (n_z) ! /rPo,n—"]hn(Po)} (nzz)’

we call 75, , the n-harmonic inner radius of the domain V with respect
to the point P,.

Remark. When the domain V is the sphere of radius R, we com-
pute the ordinary inner radius and the n-harmonic inner radius of the
sphere with respect to the point P,, which are the same value

R:— 0
R

for an arbitrary integer n.
2. Inner radii of a nearly spherical domain.
In this section, we consider the radii of a nearly spherical domain
defined in the former section.
Definition 3. Let
(1) r=14 000, ¢)
be the equation of the surface of a domain in spherical coordinates 7,
6 and ¢, where o(d, ¢) represents the infinitesimal variation of the unit
sphere. We call the domain bounded by (1) the nearly spherical domain.
We consider the series

(2) 00, ¢>=§0 X0, 0),

where the term X,(6,¢) represents a surface harmonic of degree k
which has infinitesimal coefficients of the first order.

Terms of higher infinitesimal than the second order are neglected
in all the discussions of this section.

Lemma. When the surface harmonic X,(8, ¢) in the series (2) is

X6, p)=(a cos ¢+ b sin ¢) sin 6+ ¢ cos 4,

neglecting terms of higher than the first order, the position of the
centroid C of the nearly spherical domain r<1+ p(6,¢) s (a, D, ©).

This lemma was given by G. Pélya and G. Szegd [2] and they
obtained the ordinary inner radius 7, of the nearly spherical domain
with respect to the centroid C as follows,

(8) ro=1+X,+ i{j [X,6, )PdS—3" (k+ 1>I[Xk(a, so)]zds},
4z =3

where the integral is extended over the surface of the unit sphere of
which dS is an element. As an extention of (3), we prove the follow-
ing theorem.

Theorem 2. For an arbitrary positive integer n, the n-harmonic
nner radius rg, of the nearly spherical domain r<14po(0,p) with
respect to the centroid C is

(4)  roa=1+Xot-{[1X.0,91dS T (nk—n+2) [1X.0, p)VaS}.
4z f=2
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Consequently, ¢ , decreases monotonously with respect to n.

Proof. We seek the Green’s function G,(P,C) of the mnearly
spherical domain with the pole C relative to the equation 4”%=0 in the
form

— __l St )2 S 2k—2)! /202K —~2(p2 __ k}

G, O)= = {r == & =D

+20(”': 0, §D) + Q(/"’ , SD),

p(r,0,0)= Z Z %890, @),

%=03=0

a(r,0,9)=>, Z e, @)

k=0 1=0
Here 7’ is the distance from C(a, b, ¢) to the point P, S8, ) and
T®(9, o) are surface harmonics of degree k& with first and second order
coefficients respectively. The n-harmonic inner radius 7, , is deter-
mined by

@Cn—4)! Jan-d
2-3(p 1)1 (n—2)1 7"
1 1ya- @Cn—4)!
=|(—=D"*! - n—1 1 (n—2)1 + (70, 005 o) + q(70, 605 90) |5

where 7y, 6, and ¢, are spherical coordinates of the centroid C. And so
we have

(5) 7‘?;”,,3 14 (=1)nt 22 3(722 D! :1)(7;& —2)! {S“’) +(rS®) + T,(,°)},
where the term (7S{®) has to be taken at C. If v denotes the normal
to the boundary of the nearly spherical domain, the condition

o™
on the boundary can be replaced by
orm '

Let y be the variable angle between the radii » and »,. In view of
lemma, we have

1,08 r=X,(6, ¢).
Now the boundary conditions are

9 pa,e, so)+———q(1 6,9)=0

a+1

0Zasn—3,
a —
P 0, 0) +0(6, so)a —
—2)1
=2(712(L%'_{p(0, @) —1, cos 1},
(6)

a — 110(1 6, ) + (0, so)—p(l 6, so)+ Q(l 6, ¢)
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_ =2 ... B e
—————————Znﬂ(n_l) ] [(n*+n—6){p(@, ¢) — 1, cos 7} + 27} sin 7]
@n—2)! B
t ooy PO P cos

The first order terms yield

" pa,, =0 O0=Zasn-2,
(1) aarj ot
n— _ " — !
el p(1, 6, 0) —m{.o(ﬁ, ©)—7, €os 7}

So that

( 8 ) p(7", 0, 99) =
in particular

0 _—(__1)n-1 2n—2)! 0)) —
(9) S = (D X (SP)=0.
We consider the second order terms. The mean value of the function
q(1, 6, ¢) on the surface of the unit sphere is equal to > 7 r#T». By
the first equations of (6) and (7) we have

@Cn—2)!

2__1)r-1 ok .
P TR SR LRSI

7 q,0,9=0  0=azn-3,
so that it must be the form
(10) S T = (2~ 1)»-2(Art 1 B),
1=0

where A and B are constants. Comparing the constant coefficients of
q(r, 6, ¢) and (10), we obtain

1) TP =(—1)""*B.

We take now the mean values of second order terms of (6) and find

— 2n—2)! 3, 5 __1_ 2
AtB=— BB x5 [, oras),
(n+2)A+(n—2)B
2n—2)!

=P [(n2-3n+ 6) {Xg+ > Zl;f [X,(6, so)]zdS}

+in Y Zk{ [X.(0, so)]zdS——g-r— [xi6, oras|.

Consequently
. (@n-2)!
22"'—2{("'—1) !}2
=k 2gq_ 1 2
+n3 Er—f[Xk(ﬁ, QTdS —E‘[[Xl(ﬂ,ga)] as|.
By virtue of (5), (9), (11) and (12) we find
70,n=1+Xo+—l—{f [X,0, )PdS—3 (nk—n-+2) f [X.0, ¢)]2ds},
4z =)

This is the desired equation.

[—n+a{xi+3; 4% [x.0,ras)
12)
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