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Introduction. Let G be a finite group. In this paper all groups
are finite and all characters are assumed to be characters of represen-
tations over the complex field. As is well known, every character of
G is the sum of irreducible characters of G and the set of characters
of G is closed under addition and multiplication. It is oten convenient
to consider also the difference o two characters (see [1, Chapter 6]).
From this act we shall be concerned with the ring generated by the
irreducible characters ; o G over the ring Z of rational integers. The
ring thus obtained we denote by R(G), and call it the character ring of
G. In this paper we deal with this character ring R(G).

Clearly, R(G) is a commutative Z-algebra. Its unity element is the
principal character of G. Moreover every element of R(G) is uniquely
expressible as a Z-linear combination of the ;. If G is abelian, it is
known that R(G) is isomorphic to the group ring ZG (see e.g. [5] or [6]).
However, in general, it is difficult to give a characterization of charac-
ter rings. On the other hand, it is possible to state a little urther the
structure of the ring Q (zR(G), where Q denotes the rational field.
We note that the character ring R(G) has non-zero nilpotents. This
implies that. the ring Q(R(G) is semi-simple (c. [3], [4]). There-
ore QzR(G) is isomorphic to a direct sum o a finite number of
fields K. In [6], Thompson showed this act using the decomposition
of unity element into a sum of orthogonal primitive idempotents.
On the basis of these results we obtain some properties of the ring
Q (z R(G).

In the first section of this paper we observe prime ideals of R(G)
and determine the minimal prime ideals. Next we discuss the structure
of the field K This argument leads to the result that Q (zR(G) is
determined by a permutation group on the set of conjugate classes of
G. In particular, if G is a p-group, where p is an odd prime integer,
then there is the set of integers which determines the ring QzR(G).

1. Prime ideals of the character ring R(G).
Suppose m is a multiple o the exponent of G. Let be a primi-

tive m-th root of 1 over Q, and A the integral closure of Z in the
cyclotomic field F=Q(e). Let Cl(G) denote the set of all conjugate
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classes of G. Then the direct product Ac(e) is the ring of all class
functions of G which take their values in A, and R(G) is regarded as
a subring of Ac(). Since Ac(e) is integral over R(G) (in fact, integral
over Z), any prime ideal P of R(G) is the contraction of some prime
ideal of Ac(e). This shows that P is of the form { e R(G)](c) e p} for
some c e Cl(G) and some prime ideal p of A. In particular, minimal
prime ideals are obtained by putting p=0 (see [5, 11.4]).

In order to determine the minimal prime ideals of R(G), it is con-
venient to consider the Galois group (R) of F over Q. Since (R) is
isomorphic to the group of units of Z/mZ, each automorphism a of (R)
is given by a map a()=, where t(a) is an integer relatively prime
to m and satisfies the condition t(a)t(v)_t(av) (mod m). Each a yields
a permutation of Cl(G); if a conjugate class c contains an element x
of G, then we define c as the conjugate class containing x(). When
(R) is regarded as a permutation group on CI(G), we denote it by S(G).
Then S(G) is abelian and isomorphic to the factor group (R)/, where
O={a e (R)] c=c for all c e Cl(G)}. If n is the exponent of G, then
S(G) is the same as S(G). Indeed, for each element r of (R), there is
an element a of (R) such that r is the restriction of to F,. Thus S(G)
is determined only by G not depending on the choice of a multiple m
of the exponent. Hence we shall denote it by S(G).

Theorem 1. Any finite group G determines (S(G); CI(G)), an
abelian permutation group S(G) on Cl(G).

Now we need the following known result (see e.g. [2]).
Lemma 1. Let e R(G), and let a e (R). Then we have

(1.1) ((c))=(c), c e CI(G).

Proof. Let c contain an element x of order n’, and H the cyclic
subgroup of G generated by x. Then the restriction of to H lies in
R(H), hence it is sufficient to show (1.1) for any irreducible character
of H. Since is a linear character and the order n’ of H is a divisor

for some positive integer 1. Then we haveof m, is given by (x)=

This shows that a((x))--(xt(’)), and completes the proof.
As previously stated, each minimal prime ideal of R(G) is o the

orm { e R(G)](c)--O} or some c e Cl(G). It is easy to see by Lemma
1 that if 5(c)=0, then 5(c)=0 for all a e (R). Therefore minimal prime
ideals are determined by the orbits O (l_<_i_<_r) in Cl(G) relative to
S(G). Let

P=( e R(G)I(c)=O or all c e O}, l<_i<_r.

Then we shall show that the P are all distinct. By the orthogonality

relations, we have
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(1.2) ] Z(c)z(c’)= n, if c’= c c, c’ e CI(G),
[0, otherwise,

where ;(c) is the complex conjugate of (c) and n is the order of the
normalizer of x e c in G. We note that n depends only upon the orbit
to which c belongs. For convenience we write n for n when c e 0.
For each orbit 0, define a class function d on G by d a, where
a=]eo (c). Then for a e (R) we have

(a)= , ((c))= (c)= F, z(c)-a,
cO cO cO

by Lemma 1. This shows that a e Q A =Z, and so d e R(G). By
(1.2), we have also

d(c) (n, if c e O
0, otherwise.

Hence we find d e P and d e P (i]). We conclude that the P
(1 =<i =< r) are all distinct minimal prime ideals of R(G).

Thus we have

Theorem 2. The number of minimal prime ideals of R(G) is equal
to the number of orbits of (S(G) CI(G)).

2. On the ring Q (z R(G).
In the introduction, we stated that the ring Q (z R(G) is isomor-

phic to a direct sum of a finite number of fields. Here we give a proof
of this.

Let R be a commutative ring with unity element, and ZR. Sup-
pose that R is finitely generated as a Z-module and has no non-zero
nilpotents. Moreover we assume that no non-zero element of Z is a
zero-divisor in R. (It is obvious that the character ring R(G) satisfies
these conditions.) Then R is Noetherian, hence has a finite number of
minimal prime ideals, say p,...,p. Then we have =p=0. Let
S-Z-{0}. Then S is a multiplicatively closed subset of R, and we
have Q R=S-R. It is clear that p does not meet S and

__
S-p

--0. Furthermore the S-p (l__<i=<r) are all distinct maximal ideals
of S-R and are pairwise coprime. Therefore the canonical homomor-
phism S-R-@[= (S-R/S-p) is a ring isomorphism, where S-R/S-p
S-(R/p) is the quotient field of R/p (1 =< i__< r).
Now let P (1 <:i__<r) be the minimal prime ideals of R(G). Then

each P is the kernel of the map R(G)F defined by (c), where
c e O. Hence there is a subfield K of F which is isomorphic to the
quotient field of R(G)/P. It is clear that the field K is generated by
{Z(c)} over Q. Thus we have the following decomposition which is
unique up to isomorphism.
(2.1) Q R(G)--=K1 . . Kr

Next we observe that the fields K are uniquely determined by the
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group S(G). Let 0,, ..., O, be the distinct orbits in Cl(G) relative to
S(G). Then we define subgroups S, (1 <=i<_r) of S(G) as follows;

S, {a e S(G) c c for all c e 0,}.
Moreover, for m a multiple o the exponent of G, let (R) be the Galois
group of the cyclotomic field F of order m over Q. As stated in 1,
(R) is regarded as the permutation group on Cl(G) which coincides
with S(G). Let @, be the inverse image of S, in (R), that is, @,
={a e (R) c= c or all c e 0,}. Then we have that
(2.2) S-/,
where -- gl... .

We show that K is the fixed field of (see [2] or [6]). Suppose
c e 0. We note that K is generated by {Z(c)} over Q. If a e , by
Lemma 1 we have a((c))--Z(c)-Z(c). Conversely let a e (R) such
that a(a)-a for all a e K. By (1.2) we have, z(c)z(c)= z(c)((c))= zcz(c)=n,

k k k

since a((c))=(c). This implies that c--c, and so a e . Our as-
sertion has been settled.

Collecting our results, we have established the ollowing"

Theorem :. The ring R )z R(G) is uniquely determined (up to
isomorphism) by the group (S(G) Cl(G)).

In particular, let G be a p-group, where p is an odd prime. In
this case, we assume that m is a power of p. Then the Galois group
(R) is cyclic, and so is S(G). Therefore each subgroup S is uniquely
determined by its order h which is a divisor o the order h of S(G).
Then we put

I(G) (h, ..., h}, h __> h =>... _>_ h.
Assume further that the orbit O consists of the conjugate class

containing unity element of G. Then it is clear that S-S(G), and so

h--h. Let K be the composite of the fields K (1 gi__<r). Then K is
the fixed field of , where -... . It is easy to see by (2.2)
that h--(K" K). In particular, KI=Q, and hence h-h is the dimen-
sion of K over Q.

Theorem 4. Let p be an odd prime, and G a p-group. Then the
ring Q )zR(G) is uniquely determined up to isomorphism by the set
I(G).

Proof. It suffices to prove that if G and G’ are p-groups, then
Q )zR(G) is isomorphic to QzR(G’) i and only i I(G)=I(G’). We
assume that K, S, and so on, have the same meanings for G’ as K, S,
and so on, or G. Suppose that m be the least common multiple o
orders of G and G’. Then the cyclotomic field F is a cyclic extension
of Q. I Q)zR(G) is isomorphic to QzR(G’), then (2.1) implies
that the K are isomorphic to the K in some order. Hence we may
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assume that K-K for all i. Then K-- K’, so h-- (K" K)-- (K’" K)
--h (l_i__<.r). Thus we have I(G)=I(G’).

Conversely, let I(G)=-I(G’). Then we may assume that h=-h for
all i. Obviously, (K" Q)--h--h-(K’" Q), and hence K=-K’. From
this it follows at once that (K" K)--h--h--(K"K), and so K--K
(li__<r). Then we have, by (2.1), that Q(zR(G) is isomorphic to
Q (z R(G’). This completes the proof.
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