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Throughout this paper, all rings will be assumed commutative with
identity element, and given any ring S,B(S) will mean the Boolean
algebra consisting of all idempotents of S. Moreover, R will mean a
ring, and all ring extensions of R will be assumed with identity element
1, the identity element of R. Further, R[X] will mean the ring of
polynomials in an indeterminate X with coefficients in R, and all monic
polynomials will be assumed to be of degree >=1. Given a monic
polynomial f in R[X], a ring extension S of R is called a splitting
ring of f (over R) if S=R[o,...,] and f=(X-)...(X-) (cf.
[4, Definition]). A polynomial f e R[X] is called separable if f is monic
and R[X]/(f) is a separable R-algebra. In [3], F. DeMeyer introduced
the notion of uniform separable polynomials. By [5, Theorem 3.3], it
is seen that a separable polynomial f e B[X] is uniform if and only if

f has a splitting ring S which is projective over R and with B(S)=B(R).
In [3], F. DeMeyer stated the following theorem"
Let R be a regular ring (in the sense of Von Neumann) and let S

be a finite projective separable extension of R with B(S)=B(R). Then
there is an element e S and separable polynomial p(X)e R[X] so
that S=R[a] and a is a root of p(X). Moreover, if S is a weakly Galois
extension of R then the polynomial p(X) can be chosen to be uniform
([3, Theorem 2.7]).

However, the proof contains an error which is the statement
"Applying the usual compactness argument and decomposing R by a
finite number of orthogonal idempotents e as above gives the first as-
sertion of the theorem". Indeed, applying the usual compactness
argument, we obtain a polynomial p(X) of R[X] so that R[X]/(p(X))
(R-separable)S but if S has not rank S (in the sense of [1, Defini-
tion 2.5.2]) then p(X) is not monic, and so, is not separable over R.

The purpose of this note is to improve on the result of the above
theorem. First, we shall prove the following lemma which is useful
in our study.

Lemma. Let K be a field, L a field extension of K which is finite
dimensional separable, and L=K[a]. Let n>_rankL be an integer.
Then, there exists a monic polynomial g(X) in K[X] of degree n so that
g(a)=0 and g(X) has no multiple roots (whence g(X) is separable over
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K by [4, Theorem 2.3]). If L is Galois over K and if n=rank L or K
is an infinite field then g(X) can be chosen to be L=the splitting field
of g(X).

Proof. Let m=rank L. Then there exists an irreducible monic
polynomial f(X) in K[X] of degree m so that a is a root of f(X). If
n--m then the assertion is obvious. Hence we assume that nm. We
shall here distinguish two cases"

Case 1. K has at least n elements. In this case, we can find n--m
elements a/, ., a in K so that a, a/, ., a are distinct. If we
set g(X)=f(X)(X--a/)...(X--a) then g(X) is a monic polynomial in
K[X] o degree n so that g(a)=0 and g(X) has no multiple roots.
L is Galois over K then L is the splitting field of f(X), and so, L is the
splitting field of g(X).

Case 2. K has at most n elements. In this case, K is a finite
field. Hence we may write K=GF(p) where p is the characteristic of
K. For any positive integer t, GF(pt) is a separable extension of
GF(p) of rank t, and whence there exists a monic polynomial q(X) in
K[X] of degree t which is irreducible over K; the set of such poly-
nomials will be denoted by K[X].. Now, i n=2 and m=l then for
a:/:a e K, set g(X)=f(X)(X--a) (=(X--a)(X--a)). If n=4 and m=2
then set g(X)=f(X)X(X--1). If n--2m and m2 then, or a poly-
nomial q(X) in K[X]:._, set g(X)--f(X)q(X)X. If n=2m then, or.
a polynomial q(X) in K[X]=._, set g(X)=f(X)q(X). Then g(X) is a
monic polynomial in K[X] of degree n so that g(a)=0 and g(X) has no
multiple roots. This completes the prooL

As in [6, (2.1)], Spec B(R) will mean the Boolean spectrum of R
which is the Stone space consisting of all prime ideals of B(R), where
the amily o the subsets U--{y e Spec B(R) e e y} (e e B(R)) orms a
base o the open subsets of B(R). Given an element x e Spec B(R) and
a ring extension S o R, we denote by S the ring o residue classes o
S modulo the ideal eSd, and or any element a e S, we denote by

a the image of a under the canonical homomorphism S--.S. Obvi-
ously, S is a ring extension of R.

Now, we shall prove the following theorem which contains an im-
provement on the result of F. DeMeyer [3, Theorem 2.7].

Theorem. Let R be a regular ring, and let S be a finite separable
extension of R with B(S)--B(R), and n--Max {rankzS x e Spec B(R)}.
Then there is an element e S with S-R[]. In this case, there is a
separable polynomial p(X) e R[X] of degree n with p(a)--O. Moreover,
if S is a weakly Galois extension of R and if S has ranka S or the each

R (x e Spec B(R)) is an infinite ring then the polynomial p(X) can be
chosen to be uniform and S--a splitting ring of p(X).
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Proof. Let x e Spec B(R). Then R is a field and S is a finite
separable extension of R which is a field (cf. [6, (2.13)]). Hence there
is an element e S so that S=R[]=R[]. By [6, (2.11)], we can
find an open neighborhood U(={y e Spec B(R); e e y}) of x such that
S=R[] for all y e U. Then, it follows that S(1-e) R[](1--e).
Applying the usual compactness argument, one can find orthogonal
non-zero idempotents e, ..., e in R and elements , ..., in S such
that e +... + e--1 and Se----R[]e (i--1, ..., s). Then we see that if

ve=e+... +e then S=R[o].
Now, let S=R[a]. Then, given any element x e SpecB(R), we

have S-R[r] and n>=rankS. Hence by Lemma, there exists a
separable polynomial g(X) in R[X] of degree n so that a is a root of
g(X). We write
( ) gx(X):Xn q- (an_l)xX’-1 q-... + (al)X+ (ao)
where a e R (i:0, 1, ..., n--1), and set

g(X) X’ + a,_iX’- +. + alX + ao.
Then g(a)--O. We now denote by (g(X)) the discriminant of g(X)
in the sense of [4, pp. 152-153] (, which is a polynomial in a0, a, ...,
a_ with coefficients in the ring generated by 1). Since g(X) is sepa-
rable over R, it ollows from [4, Corollary 1.3 and Theorem 2.3] that
3(g(X))=(g(X)) and is inversible in R, that is, (g(X))R--R. Hence
by [6, (2.9) and (2.11)], we can find an open neighborhood U
(= {y e Spec B(R) d e y}) of x such that for every y e U, g(a):0, and
3(g(X))R R. Then g(a)(1--d) O, (g(X))R(1--d) R(1--d), and
whence 3(g(X))(1--d)-(g(X)(1--d)) is inversible in. R(1--d). Thus
a(1--d) is a root of g(X)(1--d), and g(X)(1--d) is a separable poly-
nomial in R[X](1--d) of degree n. Applying the usual compactness
argument, we can find orthogonal non-zero idempotents d,,..., d in
R and monic polynomials g,(X),..., g(X) in R[X] of degree n such
that d+... +d:l, and the each g(X)d is a separable polynomial
in R[X]d with g(a)d-O. Then p(X)--g(X)d+... +g(X)d is a
monic polynomial in R[X] of degree n which is separable over R, and
a is a root of p(X).

Next we assume that S is a weakly Galois extension o R and that
S has rank S or the each R (x e Spec B(R)) is an infinite field. Then
for any x e Spec B(R), S is a Galois extension of R. Hence by Lemma,
g(X) of (.) can be chosen to be S=the splitting field of g(X). We
write

gx(X) (X- (al)) (X- (an)x)
where a, e S (i-1, ..., n), a=a, and set

h(X)=(X-). .(X-).
Then, by [6, (2.11)] and [4, Corollary 1.3, Theorem 2.3], there exists
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an open neighborhood U (= (y e Spec B(R); c e y}) of x such that for
every y e U, h(X)v e Rv[X] and (?(h(X))R=((h(X))R /R),=R. Then
h(X)(1-- c) e R[X](1-- c), ((h(X))R(1 c) (((h(X))R + R)(1-- c) R(1 c),
and whence (h(X))(1--c)=((h(X)(1--c)) is inversible in R(1--c). Hence
h(X)(1--c) is a separable polynomial in R[X](1--c) o degree n so that

h(X)(1 c) (X(1 c) (1-- c))... (X(1-- c) a(1-- c)).
Applying the usual compactness argument, we obtain a separable poly-
nomial q(X) in R[X] of. degree n such that q()--0 and S is a splitting
ring of q(X). Since S is projective over R and with B(S)--B(R), it
ollows from [5, Theorem 3.3] that q(X) is uniform. This completes
the proof.

Remark. Let R--GF(p)(GF(p), and S--GF(p)GF(p), where
p0 is a prime number and np is an integer. Then R is a regular
ring and S is a weakly Galois extension of R with B(S)--B(R). How-
ever, there is no separable polynomials f in R[X] so that S is a splitt-
ing ring of f.
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