No. 10]

172. Numerical Experiments on a Conjecture of B. C. Mortimer and K. S. Williams

By Masahiko SATO*) and Masataka YORINAGA**)

(Comm. by Kenjiro SHODA, M. J. A., Dec. 12, 1973)

Let p be a rational prime and n a positive integer ≥ 2 . We denote by $a_n(p)$ the least positive integral value of a for which the polynomial $x_n + x + a$ is irreducible (mod p), and set

$$a_n = \liminf a_n(p).$$

B. C. Mortimer and K. S. Williams [2] have stated the following Conjecture. Put $a_2^*=1$ and for $n \ge 3$ define

$$a_n^* = \begin{cases} 1 & if \ n \equiv 0, 1 \pmod{3}, \\ 2 & if \ n \equiv 2 \pmod{6}, \\ 3 & if \ n \equiv 5 \pmod{6}. \end{cases}$$

Then we have $a_n = a_n^*$.

K. S. Williams [5] proved that this conjecture is in fact true for n=2 and 3, and Mortimer and Williams [2] verified the conjecture for all $n \leq 20$ with the aid of a computer. The results of S. Uchiyama [4] show that the conjecture is true whenever n itself is a prime number.

In §1 of the present paper we shall show that the conjecture is true for all $n \leq 40$ by making use of an algorithm which is *faster* than the one used in [2]. As to the discriminant D_n of the polynomial $x_n + x + a_n^*$, it is possible to examine the values of it for a fairly wider range of n, and we observe in §2 some arithmetical properties of D_n that will be of an independent interest. The computations in §1 were accomplished by the first-named author and those in §2 were done by the second-named author.

The authors wish to express here their sincerest thanks to Prof. S. Hitotumatu and Prof. S. Uchiyama for the valuable suggestions.

§1. Irreducibility of $x^n + x + a_n^* \pmod{p}$. Our basic tool is as in [4] the following theorem which is an immediate consequence of the Frobenius density theorem (cf. [1; Chap. IV, §5]).

Theorem 1. Let $n \ge 2$. If there exists some prime p such that $f_n(x) = x^n + x + a_n^*$ is irreducible (mod p), then $a_n = a_n^*$.

Thus, if we can find some prime p such that $f_n(x)$ is irreducible (mod p), then the conjecture of Mortimer and Williams is true for this n. Our algorithm is based on the following three theorems.

^{*)} Department of Mathematics, Kyoto University, Kyoto.

^{*)} Department of Mathematics, Okayama University, Okayama.

Theorem 2. Let D_n denote the discriminant of $f_n(x)$. Then $D_n = (-1)^{n(n-1)/2} (n^n a_n^{*_{n-1}} + (-1)^{n-1} (n-1)^{n-1}).$

For a proof of this and the next theorems we refer to R. G. Swan [3].

Theorem 3. Let p be an odd prime, and f(x) be a monic polynomial of degree n over GF(p), with discriminant $D \neq 0$. Let r be the number of irreducible factors of f(x) over GF(p). Then $r \equiv n \pmod{2}$ if and only if D is a square in GF(p).

Theorem 4. Let p be a prime, and f(x) be a polynomial of degree n over GF(p). Then f(x) is irreducible over GF(p) if and only if the greatest common divisor $GCD(f(x), x^{p^m}-x)=1$ for all m satisfying $1 < 2m \leq n$.

Proof. Suppose that f(x) is irreducible over GF(p), and that $GCD(f(x), x^{p^m}-x)=1$ for some $m, 1 \le m < n$. Then $f(x) | x^{p^m}-x$, and we must have $GF(p^n) \subset GF(p^m)$. This is apparently a contradiction.

Suppose now that f(x) is reducible over GF(p). Then f(x) has an irreducible factor g(x) of degree $m \leq n/2$. Clearly, $g(x) | x^{p^m} - x$. Hence GCD $(f(x), x^{p^m} - x) \neq 1$.

By making use of the above theorems, we wrote down a Fortran program to find the least prime p which satisfies the condition in

n	$f_n(x) = x^n + x + a_n^*$	p_n	n	$f_n(x) = x^n + x + a_n^*$	p_n
2	$x^2 + x + 1$	2	21	$x^{21} + x + 1$	281
3	$x^3 + x + 1$	2	22	$x^{22} + x + 1$	2
4	$x^4 + x + 1$	2	23	$x^{23} + x + 3$	113
5	$x^{5} + x + 3$	7	24	$x^{24} + x + 1$	227
6	$x^{6} + x + 1$	2	25	$x^{25} + x + 1$	101
7	$x^7 + x + 1$	2	26	$x^{26} + x + 2$	337
8	$x^8 + x + 2$	17	27	$x^{27} \!+\! x \!+\! 1$	5
9	$x^9 + x + 1$	2	28	$x^{28} + x + 1$	2
10	$x^{10} + x + 1$	73	29	$x^{29} + x + 3$	89
11	$x^{11} + x + 3$	7	30	$x^{30} + x + 1$	2
12	$x^{12} + x + 1$	19	31	$x^{31} + x + 1$	5
13	$x^{13} + x + 1$	19	32	$x^{32} + x + 2$	463
14	$x^{14} + x + 2$	3	33	$x^{33} + x + 1$	7
15	$x^{15} + x + 1$	2	34	$x^{34} + x + 1$	619
16	$x^{16} + x + 1$	79	35	$x^{35} + x + 3$	193
17	$x^{17} + x + 3$	7	36	$x^{36} + x + 1$	229
18	$x^{18} + x + 1$	5	37	$x^{37} + x + 1$	587
19	$x^{19} + x + 1$	59	38	$x^{38} + x + 2$	137
20	$x^{20} + x + 2$	19	39	$x^{39} + x + 1$	11
			40	$x^{40} + x + 1$	199

Table I

Theorem 1. The computations were done on a TOSBAC 3400 at the Research Institute for Mathematical Sciences, Kyoto University, and on a HITAC 8700 at the Institute of Statistical Mathematics, Tokyo. Table I shows that the conjecture is true for all $n \leq 40$. In the table p_n denotes the least prime p such that $f_n(x)$ is irreducible (mod p).

§2. Numerical observations on D_n . In the following our main interest is in computing values of the discriminant D_n of the polynomial $f_n(x) = x^n + x + a_n^*$ and in examining the complete squareness of D_n .

Actually we computed D_n in its own value and sought for its square root by means of a multi-precisions' procedure, within the limit of integers as far as $n \leq 112$. And then, for *n* exceeding this limit, we prefered to compute D_n by reducing with modulus *p* for each of 24 prime numbers *p*, $3 \leq p \leq 97$, in succession, until D_n turned to appear as a quadratic non-residue (mod *p*).

In such a manner, we executed the computations for $n \equiv 0, 1 \pmod{4}$, $n \leq 32765$, and we found that for each of these *n* there always exists a prime *p* such that D_n is a quadratic non-residue (mod *p*). (Note that, by Theorem 2, $D_n > 0$ when and only when $n \equiv 0$ or 1 (mod 4).) We thus have the following

Conclusion. The discriminant D_n of the polynomial $f_n(x)$ is not a complete square number for all $n \leq 32765$.

As a by-product of the above computations we observed the fact that for each of the primes p referred to there is a periodicity modulo p in the sequence D_n $(n=2, 3, 4, \cdots)$, as shown in Table II. Moreover, the (smallest possible) period N_p of the sequence $D_n \pmod{p}$ was found

p	$p{-}1$	N_p
3	2	$4=2^{2}$
5	2^{2}	$60 = 2^2 3 \cdot 5$
7	2.3	$84 = 2^2 3 \cdot 7$
11	2.5	$660 = 2^2 3 \cdot 5 \cdot 11$
13	$2^{2}3$	$156 = 2^2 3 \cdot 13$
17	24	$816 = 2^{4}3 \cdot 17$
19	$2 \cdot 3^{2}$	$684 = 2^2 3^2 19$
23	$2 \cdot 11$	$3036 = 2^2 3 \cdot 11 \cdot 23$
29	$2^{2}7$	$2436 = 2^2 3 \cdot 7 \cdot 29$
31	2.3.5	$1860 = 2^2 3 \cdot 5 \cdot 31$
37	$2^{2}3^{2}$	$1332 = 2^2 3^2 37$
41	$2^{3}5$	$4920 = 2^3 3 \cdot 5 \cdot 41$
43	2.3.7	$3612 = 2^2 3 \cdot 7 \cdot 43$
47	2.23	$12972 = 2^2 3 \cdot 23 \cdot 47$

Table II

to be the least common multiple, LCM (12, p(p-1)), except for the case of p=3. It will be readily verified that the period N_p must in general be a divisor of LCM (12, p(p-1)).

The computations were performed on a HITAC 10 in the Department of Mathematics, Okayama University.

§3. A remark. In the factor table of $f_n(x) \pmod{p}$ given by Mortimer and Williams [2], there is a slip of a row corresponding to the decomposition of $f_{10}(x) \pmod{41}$. Quite recently, this lack has been supplied by Mr. M. Andô in Nagoya, who found that

$$f_{10}(x) \equiv (x^5 + 2x^4 + x^3 - 5x^2 - 2x + 12)$$

 $(x^5-2x^4+3x^3+x^2-13x+24) \pmod{41}$,

the each of the two factors on the right being irreducible (mod 41). It is reported that the relevant computation was done on a computer, FACOM 230-25.

This remark is due to Prof. Hitotumatu.

References

- G. J. Janusz: Algebraic Number Fields. Academic Press, New York and London (1973).
- [2] B. C. Mortimer and K. S. Williams: Note on a paper of S. Uchiyama (to appear).
- [3] R. G. Swan: Factorization of polynomials over finite fields. Pacific J. Math., 12, 1099-1106 (1962).
- [4] S. Uchiyama: On a conjecture of K. S. Williams. Proc. Japan Acad., 46, 755-757 (1970).
- [5] K. S. Williams: On two conjectures of Chowla. Canad. Math. Bull., 12, 545-565 (1969).