172. Numerical Experiments on a Conjecture of B. C. Mortimer and K. S. Williams

By Masahiko Sato*) and Masataka Yorinaga**)

(Comm. by Kenjiro Shoda, m. J. A., Dec. 12, 1973)

Let p be a rational prime and n a positive integer $\geqq 2$. We denote by $a_{n}(p)$ the least positive integral value of a for which the polynomial $x_{n}+x+a$ is irreducible $(\bmod p)$, and set

$$
a_{n}=\liminf _{p \rightarrow \infty} a_{n}(p) .
$$

B. C. Mortimer and K. S. Williams [2] have stated the following

Conjecture. Put $a_{2}^{*}=1$ and for $n \geqq 3$ define

$$
a_{n}^{*}=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 0,1 & (\bmod 3), \\
2 & \text { if } n \equiv 2 & (\bmod 6) \\
3 & \text { if } n \equiv 5 & (\bmod 6)
\end{array}\right.
$$

Then we have $a_{n}=a_{n}^{*}$.
K. S. Williams [5] proved that this conjecture is in fact true for $n=2$ and 3 , and Mortimer and Williams [2] verified the conjecture for all $n \leqq 20$ with the aid of a computer. The results of S. Uchiyama [4] show that the conjecture is true whenever n itself is a prime number.

In § 1 of the present paper we shall show that the conjecture is true for all $n \leqq 40$ by making use of an algorithm which is faster than the one used in [2]. As to the discriminant D_{n} of the polynomial $x_{n}+x+a_{n}^{*}$, it is possible to examine the values of it for a fairly wider range of n, and we observe in $\S 2$ some arithmetical properties of D_{n} that will be of an independent interest. The computations in § 1 were accomplished by the first-named author and those in § 2 were done by the second-named author.

The authors wish to express here their sincerest thanks to Prof. S. Hitotumatu and Prof. S. Uchiyama for the valuable suggestions.
§ 1. Irreducibility of $\boldsymbol{x}^{n}+\boldsymbol{x}+\boldsymbol{a}_{n}^{*}(\bmod \boldsymbol{p})$. Our basic tool is as in [4] the following theorem which is an immediate consequence of the Frobenius density theorem (cf. [1; Chap. IV, § 5]).

Theorem 1. Let $n \geqq 2$. If there exists some prime p such that $f_{n}(x)=x^{n}+x+a_{n}^{*}$ is irreducible $(\bmod p)$, then $a_{n}=a_{n}^{*}$.

Thus, if we can find some prime p such that $f_{n}(x)$ is irreducible $(\bmod p)$, then the conjecture of Mortimer and Williams is true for this n. Our algorithm is based on the following three theorems.

[^0]Theorem 2. Let D_{n} denote the discriminant of $f_{n}(x)$. Then

$$
D_{n}=(-1)^{n(n-1) / 2}\left(n^{n} a_{n}^{* n-1}+(-1)^{n-1}(n-1)^{n-1}\right) .
$$

For a proof of this and the next theorems we refer to R. G. Swan [3].

Theorem 3. Let p be an odd prime, and $f(x)$ be a monic polynomial of degree n over $G F(p)$, with discriminant $D \neq 0$. Let r be the number of irreducible factors of $f(x)$ over $G F(p)$. Then $r \equiv n(\bmod 2)$ if and only if D is a square in $G F(p)$.

Theorem 4. Let p be a prime, and $f(x)$ be a polynomial of degree n over $G F(p)$. Then $f(x)$ is irreducible over $G F(p)$ if and only if the greatest common divisor $\operatorname{GCD}\left(f(x), x^{p^{m}}-x\right)=1$ for all m satisfying $1<2 m \leqq n$.

Proof. Suppose that $f(x)$ is irreducible over $G F(p)$, and that GCD $\left(f(x), x^{p^{m}}-x\right)=1$ for some $m, 1 \leqq m<n$. Then $f(x) \mid x^{p^{m}}-x$, and we must have $G F\left(p^{n}\right) \subset G F\left(p^{m}\right)$. This is apparently a contradiction.

Suppose now that $f(x)$ is reducible over $G F(p)$. Then $f(x)$ has an irreducible factor $g(x)$ of degree $m \leqq n / 2$. Clearly, $g(x) \mid x^{p^{m}}-x$. Hence GCD $\left(f(x), x^{p^{m}}-x\right) \neq 1$.

By making use of the above theorems, we wrote down a Fortran program to find the least prime p which satisfies the condition in

Table I

n	$f_{n}(x)=x^{n}+x+a_{n}^{*}$	p_{n}	n	$f_{n}(x)=x^{n}+x+a_{n}^{*}$	p_{n}
2	$x^{2}+x+1$	2	21	$x^{21}+x+1$	281
3	$x^{3}+x+1$	2	22	$x^{22}+x+1$	2
4	$x^{4}+x+1$	2	23	$x^{23}+x+3$	113
5	$x^{5}+x+3$	7	24	$x^{24}+x+1$	227
6	$x^{6}+x+1$	2	25	$x^{25}+x+1$	101
7	$x^{7}+x+1$	2	26	$x^{26}+x+2$	337
8	$x^{8}+x+2$	17	27	$x^{27}+x+1$	5
9	$x^{9}+x+1$	2	28	$x^{28}+x+1$	2
10	$x^{10}+x+1$	73	29	$x^{29}+x+3$	89
11	$x^{11}+x+3$	7	30	$x^{30}+x+1$	2
12	$x^{12}+x+1$	19	31	$x^{31}+x+1$	5
13	$x^{13}+x+1$	19	32	$x^{32}+x+2$	463
14	$x^{14}+x+2$	3	33	$x^{33}+x+1$	7
15	$x^{15}+x+1$	2	34	$x^{34}+x+1$	619
16	$x^{16}+x+1$	79	35	$x^{35}+x+3$	193
17	$x^{17}+x+3$	7	36	$x^{36}+x+1$	229
18	$x^{18}+x+1$	5	37	$x^{37}+x+1$	587
19	$x^{19}+x+1$	59	38	$x^{38}+x+2$	137
20	$x^{20}+x+2$	19	39	$x^{39}+x+1$	11
			40	$x^{40}+x+1$	199

Theorem 1. The computations were done on a TOSBAC 3400 at the Research Institute for Mathematical Sciences, Kyoto University, and on a HITAC 8700 at the Institute of Statistical Mathematics, Tokyo. Table I shows that the conjecture is true for all $n \leqq 40$. In the table p_{n} denotes the least prime p such that $f_{n}(x)$ is irreducible $(\bmod p)$.
§2. Numerical observations on \boldsymbol{D}_{n}. In the following our main interest is in computing values of the discriminant D_{n} of the polynomial $f_{n}(x)=x^{n}+x+a_{n}^{*}$ and in examining the complete squareness of D_{n}.

Actually we computed D_{n} in its own value and sought for its square root by means of a multi-precisions' procedure, within the limit of integers as far as $n \leqq 112$. And then, for n exceeding this limit, we prefered to compute D_{n} by reducing with modulus p for each of 24 prime numbers $p, 3 \leqq p \leqq 97$, in succession, until D_{n} turned to appear as a quadratic non-residue $(\bmod p)$.

In such a manner, we executed the computations for $n \equiv 0,1$ $(\bmod 4), n \leqq 32765$, and we found that for each of these n there always exists a prime p such that D_{n} is a quadratic non-residue $(\bmod p)$. (Note that, by Theorem $2, D_{n}>0$ when and only when $n \equiv 0$ or 1 $(\bmod 4)$.$) We thus have the following$

Conclusion. The discriminant D_{n} of the polynomial $f_{n}(x)$ is not a complete square number for all $n \leqq 32765$.

As a by-product of the above computations we observed the fact that for each of the primes p referred to there is a periodicity modulo p in the sequence $D_{n}(n=2,3,4, \cdots)$, as shown in Table II. Moreover, the (smallest possible) period N_{p} of the sequence $D_{n}(\bmod p)$ was found

Table II

p	$p-1$	N_{p}
3	2	$4=2^{2}$
5	2^{2}	$60=223 \cdot 5$
7	$2 \cdot 3$	$84=2^{23} \cdot 7$
11	$2 \cdot 5$	$660=223 \cdot 5 \cdot 11$
13	2^{23}	$156=2^{23} \cdot 13$
17	2^{4}	$816=2^{4} 3 \cdot 17$
19	$2 \cdot 3^{2}$	$684=2^{2} 3^{2} 19$
23	$2 \cdot 11$	$3036=2{ }^{2} \cdot 11 \cdot 23$
29	27	$2436=2^{23} \cdot 7 \cdot 29$
31	$2 \cdot 3 \cdot 5$	$1860=223 \cdot 5 \cdot 31$
37	$2^{2} 3^{2}$	$1332=2^{23}{ }^{237}$
41	2^{35}	$4920=233 \cdot 5 \cdot 41$
43	$2 \cdot 3 \cdot 7$	$3612=2^{23} \cdot 7 \cdot 43$
47	$2 \cdot 23$	$12972=23 \cdot 23 \cdot 47$

to be the least common multiple, $\operatorname{LCM}(12, p(p-1))$, except for the case of $p=3$. It will be readily verified that the period N_{p} must in general be a divisor of $\operatorname{LCM}(12, p(p-1))$.

The computations were performed on a HITAC 10 in the Department of Mathematics, Okayama University.
§3. A remark. In the factor table of $f_{n}(x)(\bmod p)$ given by Mortimer and Williams [2], there is a slip of a row corresponding to the decomposition of $f_{10}(x)(\bmod 41)$. Quite recently, this lack has been supplied by Mr. M. Andô in Nagoya, who found that

$$
f_{10}(x) \equiv\left(x^{5}+2 x^{4}+x^{3}-5 x^{2}-2 x+12\right)
$$

$$
\cdot\left(x^{5}-2 x^{4}+3 x^{3}+x^{2}-13 x+24\right) \quad(\bmod 41),
$$

the each of the two factors on the right being irreducible $(\bmod 41)$. It is reported that the relevant computation was done on a computer, FACOM 230-25.

This remark is due to Prof. Hitotumatu.

References

[1] G. J. Janusz: Algebraic Number Fields. Academic Press, New York and London (1973).
[2] B. C. Mortimer and K. S. Williams: Note on a paper of S. Uchiyama (to appear).
[3] R. G. Swan: Factorization of polynomials over finite fields. Pacific J. Math., 12, 1099-1106 (1962).
[4] S. Uchiyama: On a conjecture of K. S. Williams. Proc. Japan Acad., 46, 755-757 (1970).
[5] K. S. Williams: On two conjectures of Chowla. Canad. Math. Bull., 12, 545-565 (1969).

[^0]: *) Department of Mathematics, Kyoto University, Kyoto.
 **) Department of Mathematics, Okayama University, Okayama.

