171. On the Asymptotic Behaviour of Brauer-Siegel Type of Class Numbers of Positive Definite Quadratic Forms

By Yoshiyuki Kitaoka Nagoya University
(Comm. by Kenjiro Shoda, m. J. A., Dec. 12, 1973)

For natural numbers n and $D, H_{n}(D)$ denotes the class number of positive definite integral matrices of degree n and determinant D, where two matrices A and B are in the same class if and only if A $={ }^{t} T B T$ holds for some $T \in G L(n, Z) . \quad W(n, D)$ denotes $\sum E(S)^{-1}$ with $E(S)=\#\left\{\left.T \in G L(n, Z)\right|^{t} T S T=S\right\}$, where S runs over representatives of classes of positive definite integral matrices of degree n and determinant D.

In [1] we have proved
Lemma. For any fixed natural number n, we have

$$
H_{n}(D) \sim 2 W(n, D) \quad \text { as } D \rightarrow \infty .
$$

From this lemma we see easily
Theorem 1. There exists a sequence of natural numbers $\{D(n)\}_{n=1}^{\infty}$ satisfying

$$
H_{n_{k}}\left(D_{k}\right) \sim 2 W\left(n_{k}, D_{k}\right) \quad a s \max \left(n_{k}, D_{k}\right) \rightarrow \infty
$$

with, for any sequence $\left(n_{k}, D_{k}\right)_{k=1}^{\infty}, D_{k}>D\left(n_{k}\right)$ for all k.
If moreover n_{k} is odd and D_{k} is odd and square-free, then we have (*)

$$
H_{n_{k}}\left(D_{k}\right) \sim \pi^{-\left(n_{k}\left(n_{k}+1\right)\right) / 4} \prod_{l=1}^{n_{k}} \Gamma\left(\frac{l}{2}\right) \prod_{l=1}^{\left(n_{k}-1\right) / 2} \zeta(2 l) D_{k}^{\left(n_{k}-1\right) / 2}
$$

Our aim in this note is to announce an explicit value of $D(n)$ for odd n;

Theorem 2. If n_{k} is odd and $n_{k}^{2} / \log \log D_{k} \rightarrow 0$ as $k \rightarrow \infty$, then

$$
H_{n_{k}}\left(D_{k}\right) \sim 2 W\left(n_{k}, D_{k}\right) \quad \text { as } k \rightarrow \infty .
$$

If moreover D_{k} is odd and square-free, then we have (*) in Theorem 1.

This theorem is obtained by giving an explicit value of constants c_{i} and $c_{i}(\varepsilon)$ except c_{22} in [1]. If c_{22} is explicitly given, then we have an explicit value of $D(n)$ for even n.

Remark 1. There is no essential difficulty to generalize Theorems 1 and 2 to the cases of algebraic number fields.

Remark 2. In our method we can not avoid that $D(n)$ tends to the infinity if $n \rightarrow \infty$. But the author does not know whether $\sup _{n} D(n)$ can be bounded or not. For example, let us consider cases of even unimodular positive definite quadratic forms; then the Siegel formula
implies

$$
\frac{1}{2} H_{8 n}+M_{8 n}^{\prime} \sim M_{8 n} \quad \text { as } n \rightarrow \infty,
$$

where firstly $H_{8 n}$ is the class number of even unimodular positive definite quadratic forms of degree $8 n$ which have no non-trivial units, secondly $M_{8 n}^{\prime}=2 \sum E(S)^{-1}$ where S runs over representatives of classes of even unimodular positive definite quadratic forms of degree $8 n$ which do not represent 2 but have a non-trivial unit, and finally $M_{8 n}$ $=2^{1-8 n} \frac{B_{2 n}}{(4 n)!} \prod_{j=1}^{4 n-1} B_{j}$ (=the weight) .

For $8 n=24$, the quadratic form concerning M_{24}^{\prime} is only one and it is a so-called Leech lattice. It seems natural to expect $H_{8 n} \sim 2 M_{8 n}$ or more strongly [the class number of even unimodular positive definite quadratic forms of degree $8 n] \sim 2 M_{8 n}$. To answer this question, however, detailed studies on unit groups will be required.

Reference

[1] Y. Kitaoka: Two theorems on the class number of positive definite quadratic forms. Nagoya Math. J., 51, 79-89 (1973).

