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12. A Characterization of Nonstandard Real Fields

By Shouro KASAHARA
Kobe University

(Comm. by Kinjiréo KUNUGI, M. J. A., Jan. 12, 1974)

Throughout this note, (B,0,1, +, -, <), or simply R, denotes the
ordered field of real numbers, and R the union of all sets R, defined
inductively by By=R and R, ,,=P(J~R;) »=0,1,2, - -.), where P(X)
denotes the power set of X. Let U be a s-incomplete ultrafilter on an
infinite set I. A nonstandard real number is defined to be an individual
of the ultrapower of R with respect to U, and the set *R of all non-
standard real numbers to be the value at R, of the mapping a—*a of
R into R’ defined by *a(t)=a for all te I, where = and ¢ in RT are
defined for a, b ¢ R as follows: a=b if and only if {t e I: a(t)=b(t)} € U,
and acb if and only if {tel:a(t) eb(t)} e U. Then as is known™,
(*R, *0, *1, *+,*.,*<) ig a totally ordered field which will be referred
in this note as the U-nonstandard real field. Let I be a set. By non-
standard real field over I we mean a totally ordered field which is iso-
morphic to some U-nonstandard real field for a j-incomplete ultrafilter
Uonl.

The purpose of this note is to state a condition characterizing non-
standard real fields among totally ordered fields.

Theorem 1. A totally ordered field K is a nonstandard real field
over a set I if and only if it is non-Archimedean and is @ homomorphic
image of R, the ring of all real valued functions on I with the point-
wise addition and the pointwise multiplication.

This result offers of course an axiom system for a nonstandard
real field: A nonstandard real field over o set I is defined to be any
non-Archimedean totally ordered field K containing o complete Archi-
medean subfield R, such that K is a homomorphic image of the ring Rf.

Let K be a totally ordered field. An element x of K is said to be
infinitely large if a<<x for every rational element a € K. Let I be a set.
For each real number a, let *a denote the constant mapping on I
defined by *a(t)=a for all tel. The ordering < on the ring R’ is
defined as follows: a<b if and only if a(t)<d(t) for all tel.

Proof of Theorem 1. It suffices to prove the “if” part. Let ¢ be
the homomorphism of the ring R? onto K, that is, ¢ is a mapping of
R? onto K such that g(a+b)=¢(a)+¢(bd) and ¢(ab)=¢(a)pd) for all
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a,be R'. Obviously ¢(*0)=0, ¢(*1)=1, and ¢(—a)=—¢(a) for every
ac R’. Moreover, as can readily be seen, p(a ) =¢(a)" if ae R’ is
regular, i.e., if a(?)+0 for all te I. Hence ¢(*a)+0 for every non-zero
a € R, and so the restriction of ¢ to the set R'={*ae R’:ae R} is an
injection of R’ onto ¢(R’). It follows that ¢(R’) is a copy of the real
number field B. On the other hand, a, b€ R and a<b imply o(a) <¢(d) ;
for, letting

()= {x/(b—a)(t) if a(t) <b(?),

0 if a(t)=5(1),

we have ¢(b) —p(a) =p(b—a) =¢(c)*>0 because b—a=c".

Since K is non-Archimedean, there exists an infinitely large ele-
ment ¢ € K. The surjectivity of ¢ ensures the existence of an x ¢ R?
with p(x)=x. Now if a € R, then we have ¢(*a) <¢(x), which implies,
by what we have shown above, that x< *a does not hold, or equivalently
that ¢ <x(t) for some t ¢ I. Thus I is an infinite set.

Let S” denote the characteristic function of ScI, that is SA(S)
={1} and S~(S°)={0}, where S° is the complement of S in I. We
shall prove that U={S e P(I): (S")=1} is a 5-incomplete ultrafilter on
I. Since p(IN)=¢(*1)=1 and ¢(@")=¢(*0)=0, we have U@ and
§eU. If S,TeU, then since (SNTH)*=S8".T*, we have ¢((SNT)")
=@(S"- TN =p(SMp(TA) =1, and hence SNTeVU. If SeU and SCT
ClI, then SA<KTA<*1, and so we have 1=¢(S") <o(T") <p(*1)=1, which
shows that 7T is in UJ. Moreover let S be a subset of I. Then since

e(SMP(SeN) = (SN SN =¢(*0)=0 and

B(SN) +p(SM) = (SN + 8N =p(*1)=1,
it follows that one of ¢(S"), ¢(S°") is 0 and the other is 1. Hence
either Se U or 8¢ e U. Thus U is an ultrafilter on I. To prove that
U is é-incomplete, let x be an element of R’ such that ¢(x) is infinitely
large, and let S,={tel:n<x(?)} for each positive integer n. Then
since x-S < *n, we have

@(x) = (X)p(Sp + 85 = p(x)e(Sp) + (x-S
<o(x)p(Sp) + o(*1) <e(x)p(SH) + o(x),

and so we have 0<¢(x)p(S7), which implies ¢(S))=1. Hence S, e U
for every positive integer n. But then for each ¢ ¢ I, there is a positive
integer n such that x(t)<<n. This shows that the intersection of all
S,’s is empty. Thus U is é-incomplete.

We shall now proceed to prove that the ¢{J-nonstandard real field
(*R, *0,*1, *+*.,*<) is isomorphic to K. Let xe*R. Then there
exists a unique f(x) € K such that x,e R’ and x,=x in R’ imply o(x,)
=f(x). In fact, let

_ [x(t) if x(t) e R,
@®)= {0 otherwise,
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and define f(x)=¢(z). If x,e R' and x,=x in R?, then the set S
={t e I: z(t)=x,(t)} contains the intersection of the sets {t e I: x(f) ¢ R}
and {t € I: x(t)=x(t)} which are members of U, and so Se <. Since
(8" =1 and (z—x,)-S"=*0, we have
@(x0) = (%) + 9(*¥0) = po(xg) + ((z — x0) - S™)

=0(xo) + (2 — x0) - 1=0(2) = f (x).
The uniqueness of such an f(x) follows from the existence of an x, € R’
with x,=x in R?, which is ensured by the fact that the set {t ¢ I : x(t) ¢ R}
belongs to U. Thus f is a mapping of *R into K.

If e K, then ¢(x)=« for some x e R’, and hence we have f(x)
=¢(x) =2, which establishes the surjectivity of f.

We claim now that if a,be R?, then ¢(a)=¢(b) if and only if
{tel:a®)=b(t)}eU. To prove this, it will suffice to show that ¢(a)
=0 if and only if S={t ¢ I: a(t)=0} does belong to V. To prove the
“only if” part of this statement, consider an element b ¢ R? defined by

__fa(®™? ifteS,
bit)= {0 ifteS.
Then we have ¢(S°") =¢(ab) =¢(a)p(b) =0, which shows that S is in .
The “if” part of this statement follows immediately from the fact that
a-S"=%*0; i.e. p(a)=p@e(S") =¢(a-S") =¢(*0)=0.

In order to prove that f is an injection, suppose that x,y € *R and
f(x)=f(y). Then we can find x,,y, € R’ such that x,=x and y,=y in
R, Since ox)=fx)=s=0(y), the set S={tel:x,t)=p()}
belongs to U, and consequently we have x,=y, in RI, which yields the
desired conclusion x=y in R’.

Suppose that x,y,z¢ *R and x *+y=z. Then there exist x,, y, 2,
€ R! such that x,=x,y,=y and z,=z in R?. Since the sets {t e I: x(t)
+y)=z®)}, {tel: x,BO)=x®)}, {tel: yB=y®)} and {teI: z(t)=2(D)}
belong to ¢, so does their intersection S. But then the set T={tel:
(x+y) () =2,(t)} contains S, and hence T is a member of U. There-
fore we have ¢(x,+y,) =¢(z,) as is shown above. Consequently we obtain

Jx *+p) = f(2) = p(z0) = p(x, + y0) = p(x0) + ¢(p0)
=f(x)+ (.
A similar argument establishes f(x *.y)=f(x)f(y) for every x,y ¢ *R.

Now suppose that x,y € *R and x *<yp. Then there exists a z, € R’
such that *0 *<z,=p *+(—x) in B*. Hence S={teI: 0<z,t)} e U and
*0<z,-SNin RI. Therefore we have

0=0(*0) <p(z,- 8" =0(20)p(S") = p(20) = f (¥ * + (—X)),
which implies f(x) < f(») because f(—x)=— f(x). This completes the
proof.

In the above theorem and definition, the condition that K is a
homomorphic image of R! cannot be eliminated. To establish this,
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we need the following

Lemma. Let K be a non-Archimedean totally ordered field con-
taining o complete Archimedean subfield R,. If xis an infinitely large
element of K, then X7, axi<z"*' for every a,a, ---,a, € B, where
2° denotes the unit element 1 of K.

Proof. If a e R, then we have ax™"'<x"*?, gince a <z and 0 <zx"*!,
Now the assertion of the lemma is trivial if »=0. Suppose that it

holds for a non-negative integer n, and let a,,a,, -+ -,a,,,€ B,. Then
we have

%1 a0, ——Z a,at +an+1x”“<x"“+a +1x"+1—(1+an+1)x”“<x"”

Corollary. Let K be a non-Archimedean totally ordered field
containing a complete Archimedean subfield R,. Then each infinitely
large element x of K is transcendential relative to R,.

Proof. Assume that > 7 ,a;2:=0 (a; € R,) implies a,=0 for every
1e{0,1,--.,n}. If > »*'a,x'=0 (a; e R, and if a,,,#0, then we have
"= — 3% 40,120 contrary to Lemma. Hence if >0 ax?=0
(e, € Ry), then 0n,,=0, and s0 qy=0a,= - =0a,=0.

We shall now prove the following

Theorem 2. There exists a non-Archimedean totally ordered field
K containing a complete Archimedean subfield R, such that K is not a
nonstandard real field over any set.

Proof. Let x be an infinitely large element of a nonstandard real
field *R over some set, and let R, be the subfield of all standard num-
bers of *R. R, is a complete Archimedean subfield of *R. Let us
denote by K the smallest subfield of *R containing R,U{x}, and sup-
pose that K is a nonstandard real field over a set I. Then K is iso-
morphic to some U-nonstandard real field for a §-incomplete ultrafilter
Uonl. Weidentify K with this U-nonstandard real field. Let S be
the set of all ¢t ¢ I with x(¢) ¢ R, and let

a(t) = {«/x(t) ifteS,

iftesS.
Then since I, S € U and SC{t e I: a’(t)=x(t)}, it follows that a ¢ K and
a*=x. Consequently we can find a,, - -+, @y, by, - -+, b, € B, with a,#0
and b,+#0 such that
:(f aixi>(zn] bixi>_1,
1=0 1=0

and hence

() (5 .

where 2° denotes the unit element 1 of K. Thus if 2n+1>2m, then
by the above Corollary, we have a contradiction b%2=0; if 2n+1<2m,

then since 2n+1<2m, the same Corollary yields a contradiction a2,=0.
This completes the proof.



