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1. Introduction. The purpose of this note is to give another
easier proof of the theorem of integral representation for hyperiunction
solutions o] linear partial differential equations with constant coeffi-
cients.which was first ormulated and proved in Kaneko [3], [4].

Most results in the general theory of systems of linear partial
differential equations with constant coefficients are deduced from
Ehrenpreis’ Fundamental Principle (cf. Ehrenpreis [1], [2] and
Palamodov [6]), which says the following"

Let denote the ring of linear partial differential operators with
constant coefficients in n variables. Given an r r0 matrix P(D) with
elements in , we can define a multiplicity variety 3 which is a set of
finite pairs of irreducible affine algebraic varieties V in C and row
vectors 3(5, D:) of length r0 whose elements are differential operators
in C with polynomial coefficients (which are called noetherian operators
in Palamodov [6]). Let be a certain function space oi -module.
Then every kernel u of the map P(D)" ’o" can be expressed in
the form

taa(, D:) <s/-:- >(1) u(x)= exp x
where each Z is a measure with support in V which satisfies some
growth conditions at infinity determined by . The integral converges
in the topology of .

When is the space of distributions or infinitely differentiable
functions on a convex domain in R or holomorphic functions on a
convex domain in C, the above statement is proved by Ehrenpreis [2]
and Palamodov [6]. In case is the space of hyperfunctions _(9) on
a convex domain tO in R, the measures in (1) satisfy

( 2 ) { exp (--e I1 +H()) Id/(5)l , for v0, vKtg,
J

where H() =sup Re (:-- x, }. The integral is considered in the
sense of hyperfunctions. (See Kaneko [3] or the proof below.) We
give a proof in this case using the result in the case when is the space
of holomorphic unctions.

2. Proof. Set U={zeC;Rez--(Rez,...,Rez)et0} and U
{z e U; Im z :/: 0}. Since U and U are Stein open sets in C, Leray’s
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theorem on cohomology groups with respect to the covering system
cU={U, U, U} and cU’={U, U} says that H(cU,
=H(U, (), which equals .(/2) by definition. Here ) denotes the
sheaf o germs of holomorphic unctions over C.

Let

0< (.:..o / tp(Dx) (.p.l < :.zr0
tp(Dx)

be a ree resolution. Then we can define the double complex
Kpq-C’(cU, cU’, O’q), p>/0, q0,

with the following differentials"
d2" CP(CU, CUr Orq)-..->Cp+ l(CU, cu/, 0rq)

is the natural coboundary operator and
d" Cp(cU, cU’, Orq)---C(CU, cU’, 0+1)

is the operator defined by (--1)P(D,). Then we have
p ro

,Eq_C (cU, cU O,) if p<n and q=0,
(0 if pn or q:/=0,

which follows from the solvability in a convex domain in C (c.
Theorem 2 in Komatsu [5]). Here (C)2 denotes the solution sheaf
,_(o, (o/tp(D)’, 0). On the other hand, we have

"E- H(U’ U’. 5,)=2(9). i p=n.
[H(CU, cU’, (C))=0 if p:C:n.

This follows from the fundamental theorem in hyperfunctions. Hence
we have Eq 0 when p :/= n or q :/= 0 and have

En=C(U. U’. 5ro) /d,C-(U. U’. o)
ker (P(D)" .(/2)o-.(9)).

Put I--{(al,...,an);at=--i or 1} and We={zeU;atImz>0,
1<in} or a e I. Then the element oi C(cU, cU, GT) is the set of 2
tuples of vectors of holomorphic unctions {F(z)}e, where every F(z)
is defined on W, and satisfies P(D)F,(z)-O. Therefore any u e .(9)
satisfying P(D)u-O is represented by the cohomology class o the
above {Fo(z)}e. Ehrenpreis [2] and Palamodov [6] show that F(z) is
expressed in the orm

exp z, } d/()sign a. F(z)= , t3(5, D:) (,-

where we set sign a= l-[ a and the measure/ on V satisfies

HL(). [d/()l< for VL W,.exp
V

Given 0 and K9, we set L--{zeC;RezeK, atImz--, or
1< i<n} W,. Then we have

sup Re (--] x, }< sup Re

Hence it is clear that each/ satisfies (2).
Now we mention the meaning of the integral (1) in the sense o
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hyperfunctions" We can write Z=/,, such that each /, also

satisfies (2) and has its support in the set F={ e C; Re ()>0 or
l<i<n}. We put

t3(, D) (/- 1 } ().G(z)-sign a exp z, d/,
Then G,(z) is holomorphic in W and (1) represents a vector of hyper-
functions u(x)e _(9)* as the cohomology class of {G,(z)}. We
remark that P(D)u(x)=O because P(D)G(z)=O.

We set Z= Z;. If we show that {F(z)}e, represents the same

cohomology class as {G(z)}e defined above by t, the proof is com-
pleted. But this follows immediately from the ollowing fact"

We can write/% ] Z;,, such that each Z,, satisfies (2) and has its

support in F, and that/’’-=e/’" Then f3(’ D:)exp (/-lz,
dp,,() is holomorphic in the convex hull of W and W,. This implies

that {G(z)}e and {Fo(z)},e are congruent modulo dCn-(cU, cU’, ()
in C(cU, cU’,
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