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1o Introduction. The purpose of this paper is to show the fol-
lowing"

Theorem. Let M be a complex hypersurface of complex dimen-
sion n (n>__2) in a space of constant holomorphic sectional curvature e.
If the Bochner curvature tensor of M vanishes identically, then M is

of constant holomorphic sectional curvature .
2. Preliminaries. Let (M, J, g) be a Kaehlerian manifold of con-

stant holomorphic sectional curvature of complex dimension n+ 1
(n>=2). Then the curvature tensor R of M is given by

/(2, )I--{g(, W)g:--g(2,)+g(J, W)J2( 1 )
--g(JX, W)JY+ 2g(X, JY)JW},

where X, Y and W are vector fields on M. Let M be a complex hyper-
surface o M immersed by " MM and a local field of unit vectors
normal to M. Then, identifying, or each x e M, the tangent space
Tx(M) with .(Tx(M)) T(x)(M) by means of ., we may put
( 2 ) x- AX+ s(X)J,
( 3 ’xY--g’xY+ h(X, Y)+ k(X, Y)J,
where denotes the covariant differentiation with respect to g, X and
Y are vector fields in M and --AX (resp. ’xY) is the tangential part
of z (resp. xY). It is well known that the naturally induced metric
is the Kaehlerian metric and the almost complex structure is the
Kaehlerian structure on M. We denote them also by g and J respec-
tively. Then the relations h(X, Y)-g(AX, Y), k(X, Y)=g(JAX, Y) and
JA----AJ hold (for details, see [3]).
The curvature tensor R and the Ricci tensor S of M are given by

4 R(X, Y) R(X, Y) +AXAnY+JAXAJnY,

( 5 S(X, Y)- --2g(AX, Y)+n+ lg(X y)
2

where X/% Y is the endomorphism defined by (X/% Y)(Z)= g(Z, Y)X
--g(X, Z)Y. The Bochner curvature tensor B of M is, by definition,
given by
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1
4[RX/Y+X/RY+RjXAjyB(X, Y)=R(X, Y)

2n+
( 6 ) + JX/RJY--2g(JX, RY)J-2g(JX, Y)R J]

trace R+ [X/ Y+JXAJY--2g(JX, Y)J],
(2n+ 4)(2n+ 2)

where g(RX, Y)=S(X, Y). We assume the Bochner curvature tensor
B=0. Then we have, from (6),

R(X, Y)W-- 1 [g(W, Y)RX--g(RX, W)Y+g(W, RxY)X
2n+4
g(X, W)R Y+ g(W, JY)RJX g(RJX, W)JY

( 7 ) + g(W, RJY)JX g(JX, W)RJY 2g(JX, RY)JW

2g(JX, Y)RJW} trace R
(2n+ 4)(2n+ 2)

{g(W, Y)X-- g(X, W)Y+ g(W, JY)JX
g(JX, W)JY-2g(JX, Y)JW}.

Substituting (1) and (7) into (4), we have
1

.n4_...4(g(W, Y)R1X--g(R1X, W)Y+g(W, RIY)X--g(X, W)RIY

+ g(W, JY)RJX g(RJX, W)JY+ g(W, RJY)JX
g(JX, W)RJY 2g(JX, R1Y)JW-2g(JX, Y)RJW

( 8 ) trace R [g(W, Y)X-- g(X, W)Y+ g(W, JY)JX
(2n+ 4)(2n+ 2)
g(JX, W)JY-2g(JX, Y)JW}----{g(Y, W)X-g(X, W)Y+ g(JY, W)JX-g(JX, W)JY

+ 2g(X, JY)JW} + g(AY, W)AX--g(AX, W)AY
+ g(JAY, W)JAX--g(JAX, W)JAY.

Substituting RIX --2AX+n+..leX into (8), we have, after simplifica-
2

tion,

( trace R nl){g(Y W)X--g(X, W)Y- + (2n+ 4)(2n+ 2)

+ g(JY, W)JX-g(JX, W)JY+ 2g(X, JY)JW}
1

4{_2g(W, Y)A2X+ 2g(A2X, W)Y-2g(W, A2Y)X(9)
2n+
+ 2g(X, W)A2Y 2g(W, JY)A2JX+ 2g(AJX, W)JY
2g(W, A2JY)JX+ 2g(JX, W)A2JY+ 4g(JX, A2Y)JW

+4g(JX, Y)A2JW)-g(AY, W)AX+ g(AX, W)AY
g(JAY, W)JAX+ g(JAX W)JAY.

3. Proof of Theorem. We take an orthonormal basis {e, ., e,
Jel, ",Jen} Of. T(M) such that Ae=2e, AJe--2Je,, g(Je, e)-O
(i, ]= 1, ., n) and 0<_1=< --_<2n. Then, since trace R- --2 trace A
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+ (n+ 1)n, (9) reduces to
trace A [g(Y, W)X-g(X, W)Y+ g(JY, W)JX

2(n+ 1)(n+ 2)

(10)

g(JX, W)JY+ 2g(X, JY)JW}
1{-2g(W, Y)AX+2g(AX, W)Y--2g(W, AY)X

2n+4
+ 2g(X, W)AY-2g(W, JY)AJX+ 2g(AJX, W)JY
2g(W, AJY)JX+ 2g(JX, W)AJY+ 4g(JX, AY)JW

+ 4g(JX, Y)AJW} g(AY, W)AX+ g(AX, W)AY
g(JAY, W)JAX+ g(JAX, W)JAY.

Putting X=e, Y=e, W=e ia (10), we have
trace A (e-e)

2(n+ 1)(n+ 2)

22e/226e.
Setting ] k g: i, we have

trace A(11)
2(n

(i =/= ])

rom which we have
(2-- 2){2 +2/ (n+ 2)2}-- 0 (n>=3)

(or distinct i, ] and k).
Therefore the rank A must be 0, 2n--2 or 2n. But, if the rank A :/:0,
then the non-zero 2’s must be equal to, say, , because of 0...
n. Hence, again by (11), we have

+ 2
(n+ 1)(n + 2) n+ 2

(if the rank A--2n),
n--1)2 2

n(n_ l)2 2
2

(if the rank A 2n-- 2),
from which we have 2=0 in both cases. Hence M is totally geodesic.
Thus M is of constant holomorphic sectional curvature #. If n=2,
then we have, from (11),

+ (+)+1,12
from which we have 2--22=0. Hence M is of constant holomorphic
sectional curvature #, which completes the proof.
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