69. Closeness Spaces and Convergence Spaces

By Shouro KASAHARA Kobe University

(Comm. by Kinjirô KUNUGI, M. J. A., April 18, 1974)

The purpose of this note is to show that every convergence structure ("Limitierung" of Fischer [2]) can be described by a family, called a *closeness*, of closure-like operations.

After stating several elementary properties of operations on the power set of a set, we shall introduce new notions "closeness" and "closeness space". Then some fundamental relations between closenesses and convergence structures will be established.

In what follows, the power set of a set X will be denoted by $\mathscr{P}(X)$, and the value of a mapping $\alpha : \mathscr{P}(X) \to \mathscr{P}(X)$ at $A \in \mathscr{P}(X)$ by A^{α} . The complement of $A \in \mathscr{P}(X)$ in X will be written A^{c} . For each $x \in X, \dot{x}$ denotes the filter on X consisting of all $A \in \mathscr{P}(X)$ with $x \in A$.

1. Throughout this section X denotes an arbitrary set. Let α be a mapping of $\mathscr{P}(X)$ into itself. For each $x \in X$, we denote by $\Phi_{\alpha}(x)$ the set of all $A \in \mathscr{P}(X)$ such that $x \notin A^{c\alpha}$. Evidently Φ_{α} is a mapping of X into $\mathscr{P}(X) = \mathscr{P}(\mathscr{P}(X))$.

The following four lemmas may be easily verified, and we omit the proofs.

Lemma 1. Let α be a mapping of $\mathscr{G}(X)$ into itself, and let $x \in X$. Then the following statements hold:

(1) $\Phi_{\alpha}(x) \neq \emptyset$ if and only if x does not belong to $\cap \{A^{\alpha} | A \in \mathscr{G}(X)\}$.

(2) $\emptyset \notin \Phi_{\alpha}(x)$ if and only if $x \in X^{\alpha}$.

Lemma 2. Let α be a monotone mapping^{*)} of $\mathscr{C}(X)$ into itself. Then $x \in \{x\}^{\alpha}$ for every $x \in X$ if and only if $A \subset A^{\alpha}$ for every $A \in \mathscr{C}(X)$.

Lemma 3. Let α be a monotone mapping of $\mathscr{G}(X)$ into itself, and let $A \in \mathscr{G}(X)$. Then $x \in A^{\alpha}$ if and only if $S \cap A \neq \emptyset$ for every $S \in \Phi_{\alpha}(x)$.

Lemma 4. Let α , β be two monotone mappings of $\mathscr{G}(X)$ into itself. Then $\Phi_{\alpha}(x) \subset \Phi_{\beta}(x)$ for every $x \in X$ if and only if $A^{\beta} \subset A^{\alpha}$ for every $A \in \mathscr{G}(X)$.

Let Ψ be a mapping of X into $\mathscr{P}(X)$. For each $A \in \mathscr{P}(X)$, we denote by $A^{\mathfrak{e}(\Psi)}$ the set of all $x \in X$ for which we have $S \cap A \neq \emptyset$ for every $S \in \Psi(x)$. Obviously $\mathfrak{\kappa}(\Psi)$ is a monotone mapping of $\mathscr{P}(X)$ into itself. Conversely, as an immediate consequence of Lemma 3, we have the following

^{*)} A mapping α of $\mathscr{P}(X)$ into itself is called *monotone* if $A \subset B$ implies $A^{\alpha} \subset B^{\alpha}$ for every $A, B \in \mathscr{P}(X)$.

Lemma 5. If α is a monotone mapping of $\mathscr{P}(X)$ into itself, then $\alpha = \kappa(\Phi_{\alpha})$.

Now for each subset \mathcal{A} of $\mathscr{P}(X)$, we denote by $[\mathcal{A}]$ the set of all $S \in \mathscr{P}(X)$ containing at least one member of \mathcal{A} .

Lemma 6. Let Ψ be a mapping of X into $\mathscr{P}(X)$. Then

 $\Phi_{\kappa(\Psi)}(x) = [\Psi(x)] \qquad for \ every \ x \in X.$

Proof. Clearly $A \in \Phi_{\mathfrak{c}(\Psi)}(x)$ is equivalent to the fact that $S \cap A^c = \emptyset$ for some $S \in \Psi(x)$, and $S \cap A^c = \emptyset$ if and only if $S \subset A$.

By virtue of Lemma 5 and Lemma 6, we have at once the following Corollary. If α is a monotone mapping of $\mathscr{G}(X)$ into itself, then

 $[\Phi_{\alpha}(x)] = \Phi_{\alpha}(x) \qquad for \ every \ x \in X.$

Lemma 7. Let α be a mapping of $\mathscr{G}(X)$ into itself. If $(A \cup B)^{\alpha} = A^{\alpha} \cup B^{\alpha}$ for every $A, B \in \mathscr{G}(X)$, then $\Phi_{\alpha}(x)$ is a filter on X for each $x \in X^{\alpha} \setminus \emptyset^{\alpha}$.

Proof. Let $x \in X^{\alpha} \setminus \emptyset^{\alpha}$. Then by Lemma 1, the set $\Phi_{\alpha}(x)$ is nonempty and $\emptyset \notin \Phi_{\alpha}(x)$. On the other hand, the mapping α is monotone as can readily be seen. Hence according to the above Corollary we have $[\Phi_{\alpha}(x)] = \Phi_{\alpha}(x)$. Now if $A, B \in \Phi_{\alpha}(x)$, then since $x \notin A^{c\alpha}$ and $x \notin B^{c\alpha}$, we have

 $x \notin A^{c\alpha} \cup B^{c\alpha} = (A^c \cup B^c)^{\alpha} = (A \cap B)^{c\alpha},$

which shows that $A \cap B \in \Phi_{\alpha}(x)$. This completes the proof.

Lemma 8. For each mapping Ψ of X into $\mathscr{G}(X)$, the following statements hold:

(1) $\Psi(x) \neq \emptyset$ for every $x \in X$ if and only if $\emptyset^{\kappa(\Psi)} = \emptyset$.

(2) If $x \in X$, then $\emptyset \notin \Psi(x)$ if and only if $x \in X^{\kappa(\Psi)}$.

Proof. To prove (1), suppose first $\emptyset^{\epsilon(\Psi)} \neq 0$. Then there is an $x \in \emptyset^{\epsilon(\Psi)}$. Hence if $\Psi(x)$ has a member S, then we have a contradiction $S \cap \emptyset \neq \emptyset$. Conversely if $\Psi(x) = \emptyset$ for some $x \in X$, then since $[\Psi(x)] = \emptyset$, we have, in view of Lemma 6 and (1) of Lemma 1,

 $x\in \cap \{A^{{\scriptscriptstyle m \kappa}({\scriptscriptstyle m T})}|A\in {\mathscr G}(X)\}{\subset} {\mathscr O}^{{\scriptscriptstyle m \kappa}({\scriptscriptstyle m T})}$,

and so $\emptyset^{\epsilon(\overline{v})} \neq \emptyset$. On the other hand, since $\emptyset \notin \Psi(x)$ if and only if $\emptyset \notin [\Psi(x)]$, the statement (2) follows immediately from Lemma 6 and (2) of Lemma 1.

A mapping α of $\mathscr{G}(X)$ into itself is called a *semiclosure* on X if it satisfies the following conditions:

(1) $\emptyset^{\alpha} = \emptyset$ and $X^{\alpha} = X$.

(2) $(A \cup B)^{\alpha} = A^{\alpha} \cup B^{\alpha}$ for every $A, B \in \mathscr{D}(X)$.

Lemma 7 yields obviously the following

Theorem 1. If α is a semiclosure on X, then $\Phi_{\alpha}(x)$ is a filter on X for each $x \in X$.

We have moreover the following

Theorem 2. Let Ψ be a mapping of X into $\mathscr{W}(X)$. Then $\kappa(\Psi)$ is

a semiclosure on X if and only if $\Psi(x)$ is a filter base on X for each $x \in X$.

Proof. If $\kappa(\Psi)$ is a semiclosure on X, then by Lemma 7, $\Phi_{\kappa(\Psi)}(x)$ is a filter on X for each $x \in X$. But then since $\Phi_{\kappa(\Psi)}(x) = [\Psi(x)]$ by Lemma 6, $\Psi(x)$ is a filter base on X.

Conversely assume that $\Psi(x)$ is a filter base on X for each $x \in X$. Then $\emptyset^{\alpha} = \emptyset$ and $X^{\alpha} = X$ by Lemma 8. Let $x \in (A \cup B)^{\mathfrak{e}(\Psi)}$. If $S \cap A \neq \emptyset$ for every $S \in \Psi(x)$, then $x \in A^{\mathfrak{e}(\Psi)} \subset A^{\mathfrak{e}(\Psi)} \cup B^{\mathfrak{e}(\Psi)}$. If $S_0 \cap A = \emptyset$ for some $S_0 \in \Psi(x)$, then for each $S \in \Psi(x)$ the set $S \cap S_0$ contains some $S_1 \in \Psi(x)$, and hence we have

> $S \cap B = \emptyset \cup (S \cap B) = (S_0 \cap A) \cup (S \cap B)$ $\supset (S_1 \cap A) \cup (S_1 \cap B) = S_1 \cap (A \cup B) \neq \emptyset,$

which implies that $x \in B^{\kappa(\Psi)} \subset A^{\kappa(\Psi)} \cup B^{\kappa(\Psi)}$. Thus $(A \cup B)^{\kappa(\Psi)} \subset A^{\kappa(\Psi)} \cup B^{\kappa(\Psi)}$. Now let x be in $A^{\kappa(\Psi)} \cup B^{\kappa(\Psi)}$; one can assume $x \in A^{\kappa(\Psi)}$. We have then $S \cap (A \cup B) = (S \cap A) \cup (S \cap B) \supset S \cap A \neq \emptyset$

for every $S \in \mathcal{V}(x)$. It follows that $x \in (A \cup B)^{\mathfrak{c}(\mathcal{V})}$. Therefore $(A \cup B)^{\mathfrak{c}(\mathcal{V})}$. $\supset A^{\mathfrak{c}(\mathcal{V})} \cup B^{\mathfrak{c}(\mathcal{V})}$. This completes the proof.

2. Let Γ be a set of semiclosures on a set X. The ordered pair (X, Γ) is called a *closeness space*, and Γ is called a *closeness* on X if the following conditions are satisfied:

- (C1) For every $x \in X$, there exists an $\alpha \in \Gamma$ such that $x \in \{x\}^{\alpha}$.
- (C2) For every $\alpha, \beta \in \Gamma$, there exists a $\gamma \in \Gamma$ such that $A^{\alpha} \cup A^{\beta} \subset A^{\gamma}$ for all $A \in \mathscr{G}(X)$.

Let Γ, Γ' be two closenesses on a set X. We say that Γ' is finer than Γ (or Γ is coarser than Γ') if for every $x \in X$ and for every $\alpha \in \Gamma$, there exists a $\beta \in \Gamma'$ such that $\Phi_{\beta}(x) \subset \Phi_{\alpha}(x)$. Γ and Γ' are said to be equivalent or $\Gamma \equiv \Gamma'$ if Γ is finer than Γ' and if Γ' is finer than Γ . It is easy to see that \equiv is an equivalence relation on the set of all closenesses on X.

Theorem 3. Let X be a set. For each closeness Γ on X, there exists a unique convergence structure τ on X such that, for every $x \in X$, $\Psi \in \tau(x)$ if and only if $\Phi_{\alpha}(x) \subset \Psi$ for some $\alpha \in \Gamma$.

Proof. It clearly suffices to show that the mapping τ of X into the power set of the set F(X) of all filters on X defined by

 $\tau(x) = \{ \Psi \in F(X) \mid \Phi_{\alpha}(x) \subset \Psi \text{ for some } \alpha \in \Gamma \} \qquad \text{for every } x \in X, \\ \text{is a convergence structure on } X. \text{ Theorem 1 shows that the mapping } \tau \\ \text{is well-defined. Let } x \in X \text{ and } \Phi, \Psi \in \tau(x). \text{ Then we have } \Phi_{\alpha}(x) \subset \Phi \text{ and } \\ \Phi_{\beta}(x) \subset \Psi \text{ for some } \alpha, \beta \in \Gamma. \text{ Hence the condition (C2) ensures the existence of a } \gamma \in \Gamma \text{ such that } A^{\alpha} \cup A^{\beta} \subset A^{\gamma} \text{ for all } A \in \mathscr{G}(X). \text{ Now if } \\ A \in \Phi_{\gamma}(x), \text{ then since } x \notin A^{c\gamma}, \text{ we have } x \notin A^{c\alpha} \text{ and } x \notin A^{c\beta}, \text{ which imply } \\ A \in \Phi_{\alpha}(x) \cap \Phi_{\delta}(x) \subset \Phi \cap \Psi. \end{cases}$

Consequently we have $\Phi_{\tau}(x) \subset \Phi \cap \Psi$, and hence $\Phi \cap \Psi \in \tau(x)$. It remains to prove that $\dot{x} \in \tau(x)$ for each $x \in X$. Let x be in X. Then by (C1)

one can find an $\alpha \in \Gamma$ such that $x \in \{x\}^{\alpha}$. If A is a member of $\Phi_{\alpha}(x)$, then since $x \notin A^{c\alpha}$, the set A^{c} cannot contain $\{x\}$, and so $x \in A$. Thus we have $\Phi_{\alpha}(x) \subset \dot{x}$ as desired.

The convergence structure whose existence is ensured by Theorem 3 is called the *convergence structure associated with* Γ and is denoted by τ_{Γ} , that is

 $\tau_{\Gamma}(x) = \{ \Psi \in F(X) | \Phi_{\alpha}(x) \subset \Psi \quad \text{for some } \alpha \in \Gamma \}$

for every $x \in X$, where F(X) denotes the set of all filters on X.

It is easy to verify the following theorem, and the proof is therefore omitted.

Theorem 4. Let Γ , Γ' be two closenesses on a set X. Then Γ is finer than Γ' if and only if τ_{Γ} is finer than $\tau_{\Gamma'}$.

Thus we have the following

Corollary. Two closenesses Γ , Γ' on a set X are equivalent if and only if $\tau_{\Gamma} = \tau_{\Gamma'}$.

We shall now prove the following

Theorem 5. For each convergence structure τ on X, there exists a closeness Γ on X such that $\tau = \tau_{\Gamma}$. The closeness Γ can be chosen to satisfy moreover the condition

(C1') There exists an $\alpha \in \Gamma$ such that $A \subset A^{\alpha}$ for every $A \in \mathcal{P}(X)$.

Proof. Let Γ denotes the set of all $\kappa(\Psi)$ where Ψ runs through the set $\prod \{\tau(x) | x \in X\}$. By Theorem 2, each element of Γ is a semiclosure on X. We shall show that Γ satisfies the condition (C1') which implies (C1). Since $\dot{x} \in \tau(x)$ for each $x \in X$, there is a $\Psi \in \prod \{\tau(x) | x \in X\}$ such that $\Psi(x) = \dot{x}$ for every $x \in X$; by Lemma 2, it is sufficient to prove that $x \in \{x\}^{r(\mathbb{F})}$ for every $x \in X$. Let $x \in X$; then for each $S \in \mathbb{F}(x)$, we have $S \cap \{x\} \neq \emptyset$, and consequently $x \in \{x\}^{\mathfrak{c}(\mathbb{F})}$. In order to verify (C2), let $\alpha, \beta \in \Gamma$. Then $\alpha = \kappa(\Psi_1)$ and $\beta = \kappa(\Psi_2)$ for some $\Psi_1, \Psi_2 \in \prod \{\tau(x) | x \in X\}$, and hence we can find a $\Psi_0 \in \prod \{ \tau(x) | x \in X \}$ such that $\Psi_0(x) = \Psi_1(x) \cap \Psi_2(x)$ for all $x \in X$. Let us denote by γ the semiclosure $\kappa(\Psi_0) \in \Gamma$, and let $A \in \mathscr{P}(X)$. If $x \in A^{\alpha}$, then since $\mathscr{V}_{0}(x) \subset \mathscr{V}_{1}(x)$, we have $S \cap A \neq \emptyset$ for every $S \in \Psi_0(x)$, which shows that $x \in A^r$. It follows that $A^{\alpha} \subset A^r$. Thus we have $A^{\alpha} \cup A^{\beta} \subset A^{r}$. It remains only to prove that $\tau = \tau_{r}$. Let x be in X. For each $\mathcal{F} \in \tau(x)$, one can find a $\Psi \in \prod \{\tau(x) | x \in X\}$ for which we have $\Psi(x) = \mathcal{F}$; then since $\Phi_{\mathfrak{s}(\Psi)}(x) = [\Psi(x)] = [\mathcal{F}] = \mathcal{F}$ by Lemma 6, we have $\mathcal{F} \in \tau_{\Gamma}(x)$. Consequently $\tau(x) \subset \tau_{\Gamma}(x)$. Conversely for each $\mathcal{F} \in \tau_r(x)$, there is a $\Psi \in \prod \{\tau(x) | x \in X\}$ such that $\Phi_{\kappa(\Psi)}(x) \subset \mathcal{F}$; and hence by Lemma 6 again, we have $\Phi_{\varepsilon(\Psi)}(x) = [\Psi(x)] = \Psi(x) \in \tau(x)$ which implies $\mathcal{F} \in \tau(x).$ Therefore we have $\tau_{\Gamma}(x) \subset \tau(x)$. Thus $\tau(x) = \tau_{\Gamma}(x)$ for every $x \in X$.

As an immediate consequence of Theorem 5 and Corollary of Theorem 4, we have the following Corollary. For each closeness Γ on a set X, there exists a closeness Γ' on X satisfying the conditions (C1') and $\Gamma \equiv \Gamma'$.

Let X be a set and let α be a mapping of $\mathscr{P}(X)$ into itself. Then by Lemma 2, if $\{\alpha\}$ is a closeness on X then $A \subset A^{\alpha}$ for every $A \in \mathscr{P}(X)$. Consequently $\{\alpha\}$ is a closeness on X if and only if the following conditions are satisfied:

- (P1) $\emptyset^{\alpha} = \emptyset$.
- (P2) $A \subset A^{\alpha}$ for every $A \in \mathscr{P}(X)$.
- (P3) $(A \cup B)^{\alpha} = A^{\alpha} \cup B^{\alpha}$ for every $A, B \in \mathscr{D}(X)$.

In other words, $\{\alpha\}$ is a closeness on X if and only if α is a structure of "pré-adhérence" of Choquet [1]. An operator α satisfying the conditions (P1)–(P3) is called a *closure topology* by Koutník [3]. On the other hand, Rehermann [4] has introduced the notions of "liaison" and "liaison space": a subset λ of $X \times (\mathscr{G}(X) \setminus \{\emptyset\})$ is called a *liaison* and the pair (X, λ) a *liaison space* if

- (L1) $x\lambda\{x\}$ for every $x \in X$, and
- (L2) $x\lambda(A \cup B)$ if and only if $x\lambda A$ or $x\lambda B$, for every $x \in X$ and for every $A, B \in \mathcal{P}(X)$,

where $x\lambda A$ means $(x, A) \in \lambda$. In a liaison space (X, λ) , Rehermann defines the *capusle* $A^{\alpha(\lambda)}$ of each $A \in \mathscr{G}(X)$ by

$$A^{\alpha(\lambda)} = \{ x \in X \mid x \lambda A \}.$$

As is shown in [4], the mapping $\alpha(\lambda)$ of $\mathscr{G}(X)$ into itself satisfies the conditions (P1)–(P3), and hence $\{\alpha(\lambda)\}$ is a closeness on X. Conversely if $\{\alpha\}$ is a closeness on X, then as can be easily seen, we have $\alpha = \alpha(\lambda)$ for the liaison $\lambda = \{(x, A) \in X \times (\mathscr{G}(X) \setminus \{\emptyset\}) | x \in A^{\alpha}\}$ on X. Thus a liaison and a closeness consisting of a single element define the same kind of structures. Moreover the structures of "pré-adhérence" of Choquet coincide with the principal convergence structures ("Hauptideal-Limitierung" of Fischer. See [2]). This leads us to the following

Theorem 6. A closeness Γ on a set X is equivalent to a closeness on X which is a singleton if and only if τ_{Γ} is a principal convergence structure on X.

Proof. It will be enough to prove the "if part". Assume that τ_{Γ} is a principal convergence structure on X. Then for each $x \in X$, there exists a unique filter $\Psi(x)$ on X such that $\tau_{\Gamma}(x)$ is the set of all filters on X finer than $\Psi(x)$. In order to prove that $\Gamma' = \{\kappa(\Psi)\}$ is a closeness on X, it clearly suffices to show that $x \in \{x\}^{\kappa(\Psi)}$ for every $x \in X$. To this end, let $x \in X$. Then since $\Psi(x) \subset \dot{x}$, we have $S \cap \{x\} \neq \emptyset$ for every $S \in \Psi(x)$, and hence we have $x \in \{x\}^{\kappa(\Psi)}$. Therefore Γ' is a closeness on X. Now by Lemma 5, we have

$$\tau_{\Gamma'}(x) = \{ \mathcal{F} \in F(X) | \Phi_{\varepsilon(\Psi)}(x) \subset \mathcal{F} \} = \{ \mathcal{F} \in F(X) | [\Psi(x)] \subset \mathcal{F} \}$$

= $\{ \mathcal{F} \in F(X) | \Psi(x) \subset \mathcal{F} \} = \tau_{\Gamma}(x)$

No. 4]

S. KASAHARA

for each $x \in X$, where F(X) denotes the set of all filters on X. Hence it follows from Corollary of Theorem 5 that Γ' and Γ are equivalent.

References

- [1] G. Choquet: Convergences. Ann. Univ. Grenoble, 23, 57-112 (1948).
 [2] H. R. Fischer: Limesräume. Math. Annalen, 137, 269-303 (1959).
- [3] V. Koutník: On sequentially regular convergence spaces. Czech. Math. Jour., 17(92), 232–247 (1967).
- [4] C. S. Rehermann: Espaces de liaison. Ciencias, Univ. Habana, Ser. 1, 1, 1-13 (1970).