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69. Closeness Spaces and Convergence Spaces

By Shouro KASAHARA
Kobe University

(Comm. by Kinjir8 KUNUGI, M. J. A., April 18, 1974)

The purpose of this note is to show that every convergence struc-
ture ("Limitierung" of Fischer [2]) can be described by a family, called
a closeness, of closure-like operations.

After stating several elementary properties of operations on the
power set of a set, we shall introduce new notions "closeness" and
"closeness space". Then some fundamental relations between close-
nesses and convergence structures will be established.

In what follows, the power set of a set X will be denoted by (X),
and the value of a mapping c: (X)--.(X) at A e (X) by A% The
complement of A e (X) in X will be written A. For each x e X, 2
denotes the filter on X consisting of all A e (X) with x e A.

1o Throughout this section X denotes an arbitrary set. Let a be
a mapping of (X) into itself. For each x e X, we denote by (x) the
set of all A e (X) such that x e A". Evidently . is a mapping of X
into (X) ((X)).

The following four lemmas may be easily verified, and we omit
the proofs.

Lemma 1. Let be a mapping of (X) into itself, and let x e X.
Then the following statements hold"

(1) (x):/: if and only if x does not belong to f3 {A]A e (X)}.
(2) e q(x) if and only if x e X.
Lemma 2. Let be a monotone mapping* of (X) into itself.

Then x e {x}" for every x e X if and only if AcA for every A (X).
Lemma 3. Let be a monotone mapping of (X) into itself, and

let A e (X). Then x e A if and only if S fq A =/= for every S e q.(x).
Lemma 4. Let c, be two monotone mappings of (X) into itself.

Then .(x)c(x) for every x eX if and only if AcA for every A
e (X).

Let c be a mapping of X into (X). For each A e (X), we denote
by A" the set of all x e X or which we have S glA :/: for every S
e r(x). Obviously () is a monotone mapping of (X) into itself.
Conversely, as an immediate consequence of Lemma 3, we have the
ollowing

A mapping , of (X) into itself is called monotone if AB implies A"
B" for every A, B e (X).
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Lemma 5. If is a monotone mapping of (X) into itself, then
a=(.).

Now or each subset o (X), we denote by [] the set o all
S e (X) containing at least one member o .

Lemma 6. Let be a mapping of X into (X). Then
()(x)--[(x)] for every x e X.

Proof. Clearly A e ()(x) is equivalent to the act that S
for some S e (x), and S A-G if and only i ScA.

By virtue o Lemma 5 and Lemma 6, we have at once the ollowing
Corollary. If is a monotone mapping of (X) into itself, then

[.(x)]=.(x) for every x X.
Lemma 7. Let be a mapping of (X) into itself. If (A B)"

=A"UB" for every A,B e (X), then .(x) is a filter on X for each

x X. O
Proof. Let x e X"O". Then by Lemma 1, the set O(x) is non-

empty and 0 e .(x). On the other hand, the mapping a is monotone
as can readily be seen. Hence according to the above Corollary we
have [.(x)]-.(x). Now if A, B e .(x), then since x e A" and x e B",
we have

x e A U B"= (A U B) (A B),
which shows that A B e .(x). This completes the proof.

Lemma 8. For each mapping of X into (X), the following
statements hold"

(1) (x)0 for every x e X if and only if
(2) If x e X, then 0 e (x) if and only if x e X().
Proof. To prove (1), suppose first ’()0. Then there is an

x e (). Hence ff (x) has a member S, then we have a contradiction
S0O. Conversely i (x)-0 for some x e X, then since [(x)]=0,
we have, in view o Lemma 6 and (1) of Lemma 1,

x e {A()A e (X)}c 0()
and so 0"(*)0. On the other hand, since 0 e (x) if and only
0 e [(x)], the statement (2) ollows immediately from Lemma 6 and (2)
of Lemma 1.

A mapping a o (X) into itself is called a semiclosure on X if it
satisfies the following conditions"

(1) 0=O and X"-X.
(2) (A U B)=A" B" for every A, B e (X).
Lemma 7 yields obviously the ollowing

Theorem 1. If a is a semiclosure on X, then .(x) is a filter on
X for each x e X.

We have moreover the ollowing

Theorem 2. Let be a mapping of X into (X). Then () is
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a semiclosure on X if and only if (x) is a filter base on X for each
xeX.

Proof. I () is a semiclosure on X, then by Lemma 7, ()(x)
is a filter on X or each x e X. But then since ),()(x)=[F(x)] by
Lemma 6, F(x) is a filter base on X.

Conversely assume that (x) is a filter base on X for each x e X.
Then= and X=X by Lemma 8. Let x e (A tJ B)(). I S
or every S e (x), then x e A() A() U B(). I So A or some
So e (x), then or each S e (x) the set S ( So contains some S e (x),
and hence we have

S N B-- U (S n B) (So N A) U (S N B)
(s, nn) U (S, n B)=S, n (A UB),

which implies that x e B() A() B(). Thus (A [J B)() A"()

Now let x be in A() [J B() one can assume x e A(). We have then
S (A U B)=(S A) [J (S B)SA:/:

or every S e (x). It follows that x e (A U B)"(). Therefore (A
A() U B(). This completes the proof.

2. Let F be a set of semiclosures on a set X. The ordered pair
(X, F)is called a closeness space, and F is called a closeness on X if
the ollowing conditions are satisfied"

(C1) For every x e X, there exists an a e F such that x e {x}".
(C2) For every a, fle F, there exists a . e F such thatAAcA

for all A e (X).
Let F, F’ be two closenesses on a set X. We say that F’ is finer

than/"(or F is coarser than F’) i for every x e X and for every a e F,
there exists a fl e F’ such that (x),(x). F and F’ are said to be
equivalent or F=F’ if F is finer than F’ and if F’ is finer than F.
It is easy to see that is an equivalence relation on the set of all close-
nesses on X.

Theorem :. Let X be a set. For each closeness F on X, there
exists a unique convergence structure r on X such that, for every x e X,

e r(x) if and only if ,(x)c for some e F.
Proof. It clearly suffices to show that the mapping r of X into

the power set of the set ,v(X) o all filters on X defined by
r(x)={ e F(X)I(x) or some e F} or every x e X,

is a convergence structure on X. Theorem 1 shows that the mapping
is well-defined. Let x e X and , e r(x). Then we have (x) and
(x) or some a, e F. Hence the condition (C2) ensures the
existence o a .e F such that AUAA or all A e(X). Now
A e (x), then since x e A, we have x e A and x e A, which imply

A e (x) (x)c .
Consequently we have Cr(x) , and hence e r(x). It remains
to prove that2er(x) or each xeX. Let x be inX. Then by (C1)
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one can find an e/ such that x e {x}=. If A is a member of qi=(x),
then since x e A=, the set A cannot contain {x}, and so x e A. Thus
we have q)=(x) $ as desired.

The convergence structure whose existence is ensured by Theorem
3 is called the convergence structure associated with I and is denoted
by rr, that is

rr(x) {F e F(X) I(x) for some e F}
for every x e X, where F(X) denotes the set of all filters on X.

It is easy to verify the following theorem, and the proof is there-
fore omitted,

Theorem 4. Let I, F’ be two closenesses on a set X. Then F is
finer than F’ if and only if rr i8 finer than vr,.

Thus we have the following

Corollary. Two closenesses F, F’ on a set X are equivalent if and
only if rr--vr,.

We shall now prove the following

Theorem 5. For each convergence structure r on X, there exists
a closeness F on X such that v--yr. The closeness F can be chosen to
satisfy moreover the condition

(CI’) There exists an e 1" such that AA for every A e P(X).
Proof. Let F denotes the set of all () where F runs through

the set l-I {r(x)]x e X}. By Theorem 2, each element of F is a semi-
closure on X. We shall show that/’ satisfies the condition (CI’) which
implies (C1). Since e r(x) for each x e X, there is a r e l-[ {r(x}lx e X}
such that F(x)= for every x e X; by Lemma 2, it is sufficient to prove
that x e {x}"(r) for every x e X. Let x e X; then for each S e (x),. we
have S fl {x}9, and consequently x e {x}"(r). In order to verify (C2),
let , fl e F. Then=() and fl=(2) for some F, 2 e l-I {r(x) lx e X},
and hence we can find a 0 e l-[ {v(x) Ix e X} such that F0(x)= F(x) f3 r(x)
for all x e X. Let us denote by , the semiclosure x(0) e F, and let
A e F(X). If x e A=, then since 0(x) c(x), we have S f3 A :/: O for
every S e F0(x), which shows that x eAr. It follows that A"cAr.
Thus we have A=(JAAr. It remains only to prove that v--rr. Let
x be in X. For each iF e r(x), one can find a F e 17[{r(x) lx e X} for
which we have r(x)=F; then since ,(r)(x)= [F(x)] [i]=i by Lemma
6, we have iF e rr(x). Consequently r(x) c rr(x). Conversely for each
i e rr(x), there is a e lTI {r(x) Ix e x} such that qi,(r)(x) ci; and hence
by Lemma 6 again, we have q(r)(x)=[(x)]=(x) e r(x) which implies
F e r(x). Therefore we have rr(x) cr(x). Thus r(x) rr(x) for every
xeX.

As an immediate consequence of Theorem 5 and Corollary of
Theorem 4, we have the following
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Corollary. For each closeness I on a set X, there exists a close-
ness 1"’ on X satisfying the conditions (C1’) and

Let X be a set and let c be a mapping o (X) into itself. Then
by Lemma 2, i (a} is a closeness on X then AcA" or every A e (X).
Consequently (a} is a closeness on X if and only if the following con-
ditions are satisfied"

(e) o=.
(P2) A cA" for every A e F(X).
(P3) (A B) A J B" for every A, B e F(X).

In other words, (a} is a closeness on X if and only if a is a structure
of "pr-adhrence" of Choquet [1]. An operator a satisfying the con-
ditions (P1)-(P3) is called a closure topology by Koutnik [3]. On the
other hand, Rehermann [4] has introduced the notions of "liaison"
and "liaison space"" a subset of X (F(X)\(}) is called a liaison and
the pair (X, ) a liaison space if

(L1) x{x} for every x e X, and
(L2) x(A U B) if and only if xA or xB, for every x e X and for

every A, B e (X),
where xA means (x, A) e . In a liaison space (X, ), Rehermann de-
fines the capusle A of each A e (X) by

A() {x e XIxA}.
As is shown in [4], the mapping a(2) of (X) into itself satisfies the
conditions (P1)-(P3), and hence {a(2)} is a closeness on X. Conversely
if {a} is a closeness on X, then as can be easily seen, we have
for the liaison 2 {(x, A) e X ((X) \{0}) Ix e A"} on X. Thus a liaison
and a closeness consisting of a single element define the same kind of
structures. Moreover the structures of "pr-adhrence" of Choquet
coincide with the principal convergence structures ("Hauptideal-
Limitierung" of Fischer. See [2]). This leads us to the following

Theorem 6. A closeness F on a set X is equivalent to a closeness
on X which is a singleton if and only if rr is a principal convergence
structure on X.

Proof. It will be enough to prove the "if part". Assume that rr
is a principal convergence structure on X. Then for each x e X, there
exists a unique filter F(x) on X such that rr(x) is the set of all filters
on X finer than (x). In order to prove that FI=(()} is a closeness
on X, it clearly suffices to show that x e (x}(*) for every x e X. To this
end, let xeX. Then since (x)2, we have S{x}:/: for every
S e F(x), and hence we have x e (x}(*). Therefore F is a closeness on
X. Now by Lemma 5, we have

rr,(X)--{ e F(X)I,()(x)C}--{ e F(X)I[(x)]}
{ e F(X)lC’(x)}=r(x)
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or each x e X, where F(X) denotes the set o all filters on X. Hence
it ollows rom Corollary of Theorem 5 that F’ and F are equivalent.
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