64. Wave Equation with Wentzell's Boundary Condition and a Related Semigroup on the Boundary. II

By Tadashi UENO

The College of General Education, University of Tokyo

(Comm. by Kôsaku Yosida, M. J. A., April 18, 1974)

1. In part I of this paper [1], we defined a closure \overline{A}_L of A with respect to Wentzell's boundary condition

$$Lu(x)=0, x \in \partial D,$$

and solved the wave equation

$$(1) \qquad \frac{\partial^2}{\partial t^2} u = \overline{A}_L u, \quad u(t, \cdot) \to f, \quad \frac{\partial}{\partial t} u(t, \cdot) \to g, \quad \text{as } t \to 0,$$

by solving the equations of type

(2)
$$\alpha u - \overline{A}_L u = v, \quad \text{for } v \in \mathcal{H},$$

and using the scheme in 2 of [1].

Here, we consider L as an operator which maps a function u on \overline{D} to a function Lu on ∂D , and define a closure \overline{L}_A of L with respect to the domain condition

$$(3) Au(x) = 0, x \in D,$$

just as we defined \overline{A}_L . Since each function in $\mathcal{D}(\overline{L}_A)$ can be proved to satisfy (3), it is written as $H\varphi(x)=\int_{\partial D}H(x,dy)\varphi(y)$ by the boundary value φ and the harmonic measure $H(x,\cdot)$ with respect to the domain D and point $x.^{1)}$ Thus, we define \overline{LH} by $\overline{LH}\varphi=\overline{L}_AH\varphi$ on $\{\varphi\in\mathcal{H}_{\partial}\mid H\varphi\in D(\overline{L}_A)\}$, where \mathcal{H}_{∂} is the Hilbert space of all measurable functions on ∂D such that $\|\varphi\|_{\partial}=\langle \varphi,\varphi\rangle^{\frac{1}{2}}<\infty$. Then, we can solve

(4)
$$\frac{\partial^2}{\partial t^2} \varphi = \overline{LH} \varphi, \quad \varphi(t, \cdot) \rightarrow \psi, \quad \frac{\partial}{\partial t} \varphi(t, \cdot) \rightarrow \eta, \quad \text{as } t \rightarrow 0,$$

by using the scheme in 2 of [1] and solving the equations of type

(5)
$$\lambda[u]_{\hat{\sigma}} - \bar{L}_A u = \varphi, \quad \text{for } \varphi \in \mathcal{H}_{\hat{\sigma}},$$

where $[u]_{\partial}$ is the restriction of u to the boundary ∂D .

It is expected that the mapping L and the equation (4) have some intuitive meanings, closely related with (1). Some comments on this point will be added in comparison with equation

$$(6) \qquad \qquad \frac{\partial}{\partial t}\varphi = \overline{LH}\varphi, \quad \varphi(t,\,\cdot\,) {\to} \psi, \qquad \text{as } t{\to} 0,$$

¹⁾ The harmonic measure corresponds to $A=\Delta$. For a general A, a measure with similar properties exists, and it is sometimes called the *hitting measure*. In fact, this is the probability distribution of the first hit to the boundary of the diffusion particle corresponding to A and started at point x.

which corresponds to the diffusion equation

(7)
$$\frac{\partial}{\partial t}u = \overline{A}_L u, \quad u(t, \cdot) \to f, \quad \text{as } t \to 0.$$

2. For f, g in \mathcal{H}_0 and $\lambda \geqslant 0$, we define

$$B^{\lambda}(f,g) = \lambda \langle f,g \rangle + D(f,g) + a \cdot D \langle f,g \rangle + \nu(f,g).$$

By the known estimates

(8) $c \|f\|_{\theta}^{2} \leq \|f\|^{2} + D(f, f), \quad c \|f\|^{2} \leq \|f\|_{\theta}^{2} + D(f, f), \quad \text{for } f \in \mathcal{H}_{0}, B^{2}(f, g) \text{ is equivalent with } B_{\alpha}(f, g) \text{ for positive } \lambda \text{ and } \alpha,^{2} \text{ as in }$

Proposition 1. $\langle \lambda f - Lf, g \rangle - (Af, g)_s = B^2(f, g), f, g \in \mathcal{H}_0, \lambda \geqslant 0.$ $B^2(f, g)$ can be extended uniquely to a bilinear functional on \mathcal{K} . The extension, under the same notation, satisfies

$$B^{\lambda}(f,g) \leqslant c_{\lambda} \|f\|_{l} \|g\|_{l}$$
, $\|f\|_{l}^{2} \leqslant c_{\lambda}B^{\lambda}(f,f)$, for $f,g \in \mathcal{K}$ and $\lambda > 0$.

Proposition 2. If $\{f_n, n=1, 2, \cdots\}$ in \mathcal{H}_0 and $\varphi \in \mathcal{H}_{\mathfrak{d}}$ satisfy $\lim_{n \to \infty} \|f_n\|_{l} = 0$ and $\lim_{n \to \infty} \{(Af_n, h)_s + \langle Lf_n - \varphi, h \rangle\} = 0$ for each $h \in \mathcal{H}_0$, then $\varphi = 0$.

Definition 1. If, for $f \in \mathcal{H}$, there are a sequence $\{f_n, n=1, 2, \cdots\}$ in \mathcal{H}_0 and φ in \mathcal{H}_{∂} such that $\lim \|f_n - f\|_{l} = 0$, and

(9)
$$\lim_{n\to\infty} \{(Af_n, h)_s + \langle Lf_n - \varphi, h \rangle\} = 0, \quad \text{for each } h \in \mathcal{H}_0,$$

then we define $\overline{A}_L f = \varphi$, and denote the set of all such f by $\mathcal{D}(\overline{L}_A)$.

Proposition 3. If in $\mathcal K$ belongs to $\mathcal D(\overline{L}_A)$, if and only if there is a φ in $\mathcal H_{\vartheta}$ such that

$$B^{\lambda}(f,h) = \langle \varphi, h \rangle$$
, for $h \in \mathcal{H}_0$.

In this case, φ satisfies

$$\lambda[f]_{\hat{\theta}} - \bar{L}_A f = \varphi$$
.

Proposition 4. For each $\varphi \in \mathcal{H}_{\delta}$ and $\lambda > 0$, (5) has a unique solution f such that

$$||f||_{l} \leq c'_{\lambda} ||\varphi||_{\hat{\sigma}}, \quad B^{\lambda}(f,g) = \langle \varphi, g \rangle \quad for \ g \in \mathcal{K}.$$

Hence, $\lambda - \bar{L}_A$ maps $\mathcal{D}(\bar{L}_A)$ onto $\mathcal{H}_{\bar{\sigma}}$ in one to one way, and $(\lambda - \bar{L}_A)^{-1}$ is linear and bounded.

The proof is similar to the case of (2), considering $F(f) = \langle \varphi, f \rangle$ for $f \in \mathcal{K}$ in the place of $F(f) = \langle v, f \rangle_s$ for Proposition 5 in [1].

Proposition 5. Each f in $\mathcal{D}(\bar{L}_A)$ satisfies (3).

In fact, let $\{f_n\}$ be a sequence in \mathcal{H}_0 such that (9) holds, and let h be in \mathcal{H}_0 and vanish near ∂D . Then, by Green-Stokes formula, we have

 $B_{\alpha}^{\lambda}(f,g) = \alpha(f,g) + \lambda \langle f,g \rangle + D(f,g) + aD \langle f,g \rangle + \nu(f,g),$

instead of introducing $B_{\alpha}(f,g)$ and $B^{\lambda}(f,g)$ separately. Then, a duality between $\overline{A_L}$ and $\overline{L_A}$ extends to $\overline{A_{L-\lambda}}$ and $\overline{L_{A-\alpha}}$, and a relation between G_{α} and $\overline{LH_{\alpha}}$ can be discussed as in [2]. But, this is not necessary for our present purpose, and we omit it.

²⁾ For a more general description, it is natural to define

$$0 = \lim_{n \to \infty} \{ (Af_n, h)_s + \langle Lf_n - \overline{L}_A f, h \rangle \}$$

=
$$\lim_{n \to \infty} (Af_n, h)_s = \lim_{n \to \infty} (f_n, Ah) = (f, Ah),$$

which implies the above assertion.

3. Semigroup on the boundary. Since \overline{D} is compact and ∂D is smooth, there is a unique solution of

$$Au(x)=0$$
, $x \in D$, $u(x)=\varphi(x)$, $x \in \partial D$, for $\varphi \in C(\partial D)$.

The solution is written as $u(x) = H\varphi(x) = \int_{\partial D} H(x, dy)\varphi(y)$ by a measure

 $H(x, \cdot)$ on ∂D with total mass 1. By the known estimate

(10)
$$||H\varphi|| \leqslant c' ||\varphi||_{\partial}, \quad \text{for } \varphi \in C(\partial D),$$

H can be extended uniquely to a bounded linear mapping from \mathcal{H}_{∂} to \mathcal{H} . The extension, under the same notation, satisfies

$$||H\varphi||_s \leqslant c'' ||\varphi||_{\hat{\sigma}}, \qquad \varphi \in \mathcal{H}_{\hat{\sigma}}.$$

We write $\mathcal{H}_{0,\partial}$ for the set of all $[f]_{\partial}$ of f in \mathcal{H}_{0} , that is, $\mathcal{H}_{0,\partial}$ = $\{[f]_{\partial} | f \in \mathcal{H}_{0}\}$. We define, for φ , ψ in $\mathcal{H}_{0,\partial}$,

$$B_{i}\langle\varphi,\psi\rangle = B^{i}(H\varphi,H\psi)$$

$$\langle\varphi,\psi\rangle_{l} = B_{i}\langle\varphi,\psi\rangle, \qquad \|\varphi\|_{l,\vartheta} = \langle\varphi,\varphi\rangle^{\frac{1}{2}}.$$

Let \mathcal{K}_{∂} be the completion of $\mathcal{H}_{0,\partial}$ with respect to $\| \|_{l,\partial}$. $B_{\lambda}(\cdot,\cdot), \langle \cdot, \cdot \rangle_{l}$ and $\| \|_{l,\partial}$, are extended on \mathcal{K}_{∂} . \mathcal{K}_{∂} is imbedded in \mathcal{H}_{∂} as a dense subset.

Proposition 6. For f in \mathcal{K} , $[f]_{\hat{\sigma}}$ belongs to $\mathcal{K}_{\hat{\sigma}}$.

In fact, there is a sequence $\{f_n\}$ in \mathcal{H}_0 such that $\|f_n - f\|_l \to 0$. But, an arbitrary h in \mathcal{H}_0 is written as $h = H[h]_{\hat{\sigma}} + g$, where $g = h - H[h]_{\hat{\sigma}}$ is smooth and vanishes on ∂D . Since $H[h]_{\hat{\sigma}}$ satisfies (3), $D(H[h]_{\hat{\sigma}}, g) = 0$. Thus, by a simple computation using (8),

$$\|h\|_{t}^{2} = \|H[h]_{\delta}\|_{t}^{2} + D(g,g) \geqslant \|H[h]_{\delta}\|_{t}^{2} \geqslant \frac{1}{2} \min(c,1)\|[h]_{\delta}\|_{t,\delta}^{2}.$$

This, applied for $h=f_m$ or f_n , implies $\lim_{m\to\infty,n\to\infty}\|(f_m)_{\mathfrak{d}}-(f_n)_{l,\mathfrak{d}}\|$ $\leqslant c'\cdot\lim_{m\to\infty,n\to\infty}\|f_n-f_m\|_l=0$. Thus, $[f_n]_{\mathfrak{d}}$ converges to a limit in $\mathcal{K}_{\mathfrak{d}}$, which coincides with $[f]_{\mathfrak{d}}$ by $c\|[f]_{\mathfrak{d}}-[f_n]_{\mathfrak{d}}\|_{\mathfrak{d}}\leqslant \|f_n-f\|_l\to 0$.

Definition 2. Let $\mathcal{D}(\overline{LH})$ be the set of all φ in $\mathcal{H}_{\mathfrak{d}}$ such that $H\varphi \in \mathcal{D}(\overline{L}_A)$. We define $\overline{LH}\varphi = \overline{L}_A H\varphi$, for $\varphi \in \mathcal{D}(\overline{LH})$.

 $\mathcal{D}(\overline{LH})$ is contained in \mathcal{K}_{δ} . In fact, for each φ in $\mathcal{D}(\overline{LH})$, $H\varphi$ is in $\mathcal{D}(\overline{L}_{A})$, and hence in \mathcal{K} . Thus, by Proposition 6, $[H\varphi]_{\delta} = \varphi$ is in \mathcal{K}_{δ} .

Here, we rewrite Proposition 4 as in

Lemma 1. (11) $\langle \lambda \varphi - \overline{LH} \varphi, \psi \rangle = B_{\lambda} \langle \varphi, \psi \rangle$, for $\varphi \in \mathcal{D}(\overline{LH})$, $\psi \in \mathcal{K}_{\delta}$. There is a unique solution of

$$\lambda \varphi - \overline{LH} \varphi = \psi$$
, for each $\psi \in \mathcal{H}_{\partial}$ and $\lambda > 0$.

Thus, $K_{\lambda} = (\lambda - \overline{LH})^{-1}$ is defined on \mathcal{H}_{δ} , and maps \mathcal{H}_{δ} onto $\mathcal{D}(\overline{LH})$ in one to one way, satisfying

$$\|K_{\lambda}\psi\|_{l,\vartheta} \leqslant c'' \|\psi\|_{\vartheta}, \quad B_{\lambda}\langle K_{\lambda}\psi, \eta \rangle = \langle \psi, \eta \rangle \quad \text{for each } \eta \in \mathcal{K}_{\vartheta}.$$

Proposition 7. For $\varphi = K_{\lambda} \psi$, we have

$$\begin{split} \lambda \, \|\varphi\|_{\vartheta}^2 + (\|\varphi\|_{l,\vartheta}^2 - \|\varphi\|_{\vartheta}^2) = & \langle \varphi, \psi \rangle \qquad for \ \psi \in \mathcal{H}_{\vartheta}. \\ \|\psi - \lambda \varphi\|_{\vartheta}^2 + \lambda (\|\varphi\|_{l,\vartheta}^2 - \|\varphi\|_{\vartheta}^2) = & \langle \varphi, \psi \rangle_{l} - \langle \varphi, \psi \rangle, \qquad for \ \psi \in \mathcal{K}_{\vartheta}. \\ \lambda \, \|\psi - \lambda \varphi\|_{l}^2 + (\|\psi - \lambda \varphi\|_{l,\vartheta}^2 - \|\psi - \lambda \varphi\|_{\vartheta}^2) = & \langle \lambda \varphi - \psi, \overline{LH}\psi \rangle, \qquad for \ \psi \in \mathcal{D}(\overline{LH}). \end{split}$$

These are proved by using (11). Combining these equalities, we have

Lemma 2.
$$\lambda \|K_{\lambda}\varphi\|_{\hat{\sigma}} \leq \|\varphi\|_{\hat{\sigma}}, \lim_{\lambda \to \infty} \|\lambda K_{\lambda}\varphi - \varphi\|_{\hat{\sigma}} = 0, \text{ for } \varphi \in \mathcal{H}_{\hat{\sigma}}.$$

$$\lambda \|K_{\lambda}\varphi\|_{l,\hat{\sigma}} \leq \|\varphi\|_{l,\hat{\sigma}}, \lim_{\lambda \to \infty} \|\lambda K_{\lambda}\varphi - \varphi\|_{l,\hat{\sigma}} = 0, \text{ for } \varphi \in \mathcal{K}_{\hat{\sigma}}.$$

Theorem 1. \overline{LH} is the generator of a semigroup $\{\tilde{T}_t, t \geqslant 0\}$ on $\mathcal{H}_{\mathfrak{d}}$, which satisfies (A,2) and (A,3) in 2 of (1). (A,1), (A,2) and (A,5) are satisfied for $\mathcal{A}=\overline{LH}$ and for $\mathcal{H}_{\mathfrak{d}}$ and $\mathcal{K}_{\mathfrak{d}}$, replaced in the place of \mathcal{H} and \mathcal{K} . Hence, there is a group of bounded linear operators $\{\tilde{U}_t, -\infty < t < \infty\}$ on the space $\tilde{\mathbf{B}}=\begin{pmatrix} \mathcal{K}_{\mathfrak{d}} \\ \mathcal{H}_{\mathfrak{d}} \end{pmatrix}$ with norm $\left\|\begin{pmatrix} \varphi \\ \psi \end{pmatrix}\right\| = (\|\varphi\|_{l,\mathfrak{d}}^2 + \|\psi\|_{\mathfrak{d}}^2)^{\frac{1}{2}}$. $\{\tilde{U}_t\}$ satisfies $\|\tilde{U}_t\| \leqslant e^{b^{\prime\prime\prime}t}$ and has generator $\tilde{\mathbf{G}}$:

$$\tilde{\mathbf{G}}\!\!\left(\!\!\!\begin{array}{c} \varphi \\ \psi \end{array}\!\!\!\right) \!=\! \left(\!\!\!\begin{array}{c} \psi \\ \overline{LH}\varphi \end{array}\!\!\!\right), \quad for \quad \left(\!\!\!\begin{array}{c} \varphi \\ \psi \end{array}\!\!\!\right) \!\in \mathcal{D}(\tilde{\mathbf{G}}) \!=\! \left(\!\!\!\begin{array}{c} \mathcal{D}(\overline{LH}) \\ \mathcal{K}_{\vartheta} \end{array}\!\!\!\!\right).$$

Hence, the unique solution of (4) is given by $\tilde{U}_t\begin{pmatrix} \psi \\ \eta \end{pmatrix}$ for $\psi \in \mathcal{D}(\overline{LH})$ and $\eta \in \mathcal{K}_{\mathfrak{d}}$.

The proof is similar to that of Theorem 2 in (1).

4. In the case of the diffusion equation, the terms in Lu(x) have the intuitive meanings: $\sum \alpha_{ij}(x) \frac{\partial^2 u}{\partial \xi_i \partial \xi_j}(x) + \sum \beta_i(x) \frac{\partial u}{\partial \xi_i}(x) \text{ corresponds}$ to the diffusing along the boundary ∂D , $\gamma(x)u(x)$ to the vanishing of the particle at ∂D , $\delta(x)Au(x)$ to the *sticky barrier* where the particle spends time comparably long with the stay in the domain D. $\mu(x)\frac{\partial u}{\partial n}(x)$ corresponds to the reflection at ∂D , and the last term to the jump ∂D according to the measure $\nu(x,\cdot)$.

For a smooth function φ on ∂D , $\overline{LH}\varphi$ can be represented as

$$\begin{split} \overline{LH}\varphi(x) &= \sum \tilde{\alpha}_{ij}(x) \frac{\partial^2 \varphi}{\partial \xi_i \partial \xi_j}(x) + \sum \tilde{\beta}_i(x) \frac{\partial \varphi}{\partial \xi_i}(x) + \tilde{\gamma}(x)\varphi(x) \\ &+ \int_{\partial D} \left(\varphi(y) - \varphi(y) - \sum \frac{\partial \varphi}{\partial \xi_i}(x) \xi_i(x,y) \right) \tilde{\nu}(x,dy) \end{split}$$

The semigroup with generator \overline{LH} , in the set up of [2], corresponds to a Markov process on the boundary, which is the trace on ∂D of the diffusion determined by [7], described by a time scale called the *local time* on the boundary. This was conjectured and proved in a special case in [2], and extended by K. Sato [3] and then by P. Priouret [4] for a

wide class of Wentzell's boundary conditions.3)

For the wave equation, a kind of *duality* in appearence between (2) and (5) seems to suggest, as in the case of diffusion, that the solution of (4), or the group of operators with generator $\tilde{G}\begin{pmatrix}\varphi\\\psi\end{pmatrix} = \begin{pmatrix}\psi\\\overline{LH}\varphi\end{pmatrix}$, describes the wave propagation restricted on the boundary, depending on a time scale for the boundary ∂D . Here, it is expected that the boundary has a mass distributed according to the measure $\delta(x)dx$, and the wave propagates through ∂D partly by the vibration of the boundary itself determined by the term

$$\sum \alpha_{ij}(x) \frac{\partial^2 u}{\partial \xi_i \partial \xi_j}(x) + \sum \beta_i(x) \frac{\partial u}{\partial \xi_i}(x),$$

just as the wave propagation in D is determined by

$$Au(x) = \sum a_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j}(x) + \sum b_i(x) \frac{\partial u}{\partial x_i}(x).$$

The classical terms $\gamma(x)u(x)$ and $\mu(x)\frac{\partial u}{\partial n}(x)$ correspond to the energy

loss and the reflection at ∂D , respectively. By the last term of Lu(x), a wave arrived at point x on ∂D instantly gives effect on the support of the measure $\nu(x,\cdot)$.

In the case of diffusion equation, the above explanations are justified rigorously on the basis of path spaces and the related mathematical tools. On the other hand, it seems that a parallel justification for the wave equation is not possible at present. Some mathematical method for a more detailed description of the wave propagation is desired.

References

- [1] T. Ueno: Wave equation with Wentzell's boundary condition and a related semigroup on the boundary. I. Proc. Japan Acad., 49, 672-677 (1973).
- [2] —: The diffusion satisfying Wentzell's boundary condition and the Markov process on the boundary. I, II. Proc. Japan Acad., 36, 533-538, 625-629 (1960).
- [3] K. Sato: Time change and killing for multi-dimensional reflecting diffusion. Proc. Japan Acad., 39, 69-73 (1963).
- [4] P. Priouret: Processus de Markov sur une variété à bord compacte. Ann. l'Inst. H. Poincaré, 4, 193-253 (1968).
- [5] K. Sato: A decomposition of Markov processes. J. Math. Soc. Japan, 17, 219-243 (1965).

³⁾ Markov process on the boundary can be obtained by a purely probabilistic approach as in K. Sato [5] and M. Motoo [6], by defining the local time on the boundary first.

⁴⁾ This interpretation of the term $\delta(x)Au(x)$ was given by Feller [7] in one dimension. In view of the definition of \mathcal{H} , this naturally extends to the general case.

- [6] M. Motoo: Application of additive functionals to the boundary problem of Markov processes (Lévy's system of *U*-processes). Proc. 5-th Berkeley Symp., 2, Part II, 75-110 (1967).
- [7] W. Feller: On the equation of the vibrating string. J. Math. Mech., 8, 339-348 (1959).