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Wave Equation with Wentzell’s Boundary Condition
and a Related Semigroup on the Boundary. II
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respect to Wentzell’
Lu(x)--O,

and solved the wave equation

( 1 ) --u Au, u(t, )-*f,

by solving the equations of type
( 2 au--ALu=v,
and using the scheme in 2 of [1].

In part I of this paper [1], we defined a closure A of A with
s boundary condition

xeD,

)-.g, as t--.O,

or v

Here, we consider L as an operator which maps a unction u on D
to a unction Lu on 3D, and define a closure L of L with respect to
the domain condition
( 3 ) Au(x)--O, x e D,
just as we defined A. Since each unction in (L) can be proved to

satisfy (3), it is written as H(x)--f H(x, dy)(y) by the boundary
J0D

value and the harmonic measure H(x,.) with respect to the domain
D and point x. 1) Thus, we define LH by LH=
e D(L)}, where ( is the Hilbert space of all measurable unctions on
3D such that I11 --(, ?}t c. Then, we can solve

( 4 )
3t .9=LH, (t, .)-*, (t, .)-.7, as t-*0,

by using the scheme in 2 of [1] and solving the equations of type
( 5 [u]--Lu--, or
where [u]o is the restriction of u to the boundary 3D.

It is expected that the mapping L and the equation (4) have some
intuitive meanings, closely related with (1). Some comments on this
point will be added in comparison with equation

(6) =
1) The harmonic measure corresponds to A . For a general A, a measure

with similar properties exists, and it is sometimes called the hitting measure. In
fact, this is the probability distribution of the first hit to the boundary of the
diffusion particle corresponding to A and started at point x.
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which corresponds to the diffusion equatio

( 7 ) O__u-- rU, u(t, )--*f, as t--*0.

2. For f, g in (0 and 2>0, we define
B(f g) 2(f g} +D(f g) + a. D(f g} + ,(f g).

By the known estimates
( 8 ) c IIf 11 < IIf q- D(f, f), c IIf < f I1 + D(f, f), or f e q(0,
B(f, g) is equivalent with B.(f, g) for positive and a,) as in

Proposition 1. (2f Lf g} (Af, g) B(f g), f, g e o, O.
B(f g) can be extended uniquely to a bilinear functional on . The
extension, under the same notation, satisfies
B(f, g) c f g [f] cB(f, f), for f, g e and O.
Proposition 2. If {fn, n=l,2, ...} in o and e satisfy

lira l[fn =0 and lira {(Aft, h), + Lfn--, h}} :0 for each h e o, then

Definition 1. I, for f e, there are a sequence {f, n= 1, 2, ...}
in 0 and in such that lira ]]f,--f] =0, and

( 9 ) lim {(Aft, h) + (Lf--, h}} =0, or each h e 0,

then we define Xf=?, and denote the set of all such f by (L).
Proposition . f in belongs to (), if and only if there is a

in such that
B(f h)= (, h}, /or h e o.

In this case, satisfies
[f]-Lf=.

Proposition 4. For each e and 0, (5) has a unique solu-
tion f such that

y ci I, B(f, g) (, g} or g .
Hence, -- maps () onto in one to one way, and (2--)- is
linear and bounded.

The proof is similar to the case of (2), considering F(f)=(, f} for
f e in the place of F(f)=(v, f) or Proposition 5 in [1].

Proposition 5. Each f in (L) satisfies (3).
In fact, let {f} be a sequence in 0 such that (9) holds, and let h

be in 0 and vanish near 3D. Then, by Green-Stokes formula, we
have

2) For a more general description, it is natural to define
B.(f g) --aft, g) + (f g} +D(f g) +aD(f g} +(f g),

instead ot introducing B(f,g) and B(f,g) separately. Then, a duality between
AL and L-- extends to AL- and La_., and a relation between G, and can be
discussed as in [2]. But, this is not necessary ’or our present purpose, and we
omit it.
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0= lim {(Afn, h) + (Lf--L.f h}}
lim (Aft, h)-- lim (f, Ah) (f, Ah),

which implies the above assertion.. Semigroup on the boundary. Since D is compact and 3D is
smooth, there is a unique solution of

Au(x)--O, x e D, u(x)=(x), x e D, or e C(D).

The solution is written as u(x)=H(x)=[" H(x, dy)(y) by measure
OD

H(x, .) on 3D with total mass 1. By the known estimate
(10) H c’ , or e C(3D),
H can be extended uniquely to a bounded linear mapping rom to. The extension, under the same notation, satisfies

We write o,o for the set of all [f]o of f in o, that is,
([f]o f e o}. We define, for , in o,o,

Ba(, + Ba(H, H+)
(v, v

Let be the completion of 0, with respect to l]t,o. Ba(., .), (.,
and Ilt., are extended on. is imbedded in as a dense sub-
set.

Proposition 6. For f in, [f]o belongs to .
In fact, there is a sequence (f,} in 0 such that llf,-fllz0. But,

an arbitrary h in 0 is written as h=H[h]+ g, where g=h-H[h] is
smooth and vanishes on OD. Since H[h]o satisfies (3), D(H[h], g)=0.
Thus, by a simple computation using (8),

1 rain (c, 1)l[[h]o,
This, applied for h=f or f,, implies lim

c’. lim llf,-fll-o. Thus, [f,]o converges to a limit in

which coincides with [f]0 by c [f],- [f,]o Ilo IIf,-fll0.
Definition 2. Let (LH) be the set of all in , such that

H e 2(a). We define LH=ZaH, for ? e
(LH) is contained in 0. In fact, for each ? in (LH), H is in

(La), and hence in . Thus, by Proposition 6, [H]0= is in.
Here, we rewrite Proposition 4 as in
Lemma 1. (11) (--LH?, =Ba(, +, for e 2(LH), e.

There is a unique solution of--LH , for each e and > O.
Thus, Ka=(2--LH)- is defined on, and maps onto 2(LH) in one
to one way, satisfying

K+ I1,0 c" Iio, Ba(Ka+, ) (,) for each e.
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Proposition 7. For --Kaq, we have

+-IIZ+ (11 I1,-II I1%): <, +>-<, +>, for
II-ll[m (II-II,-II-IIZ)-<-+, LH>, o <LH).

These are proved by using (11). Combining these equalities, we
have

Lemma 2. 2 K9 [[ < 9 [[, lim 2K9--9 [{: O, for 9 e.
2 {{K{[,{{[{,, lim [{2K--{{,=0, for e

Theorem 1. LH is the generator of semigroup {, t0} on,
which satisfies (A, 2) and (A, 3) in 2 of (1). (A, 1), (A, 2) and (A, 5) are
satisfied for =LH and for and , replaced in the place of
and. Hence, there is a group of bounded linear operators {Ut,

< t<} on the space B with norm (ll II,0

satisfies Ut e’’ and has generator G"

The proof is similar to that of Theorem 2 in (1).
4. In the case of the diffusion equation, the terms in Lu(x) have

the intuitive meanings" a(x)-_3 (x) + fl(x) (x) corresponds

to the diffusing along the boundary 3D, y(x)u(x) to the vanishing o the
particle at 3D, 3(x)Au(x) to the sticky barrier where the particle spends

time comparably long with the stay ia the domain D. Z(x)(x) corres-

ponds to the reflection at D, and the last term to the jump D ac-
cording to the measure ,(x, ).

For a smooth unction on D, LH? can be represented as

LS?(x) 8a(x) (x) + (x) 3 (x) + (x)?(x)

+ I0. ((Y)-()- ()(x, y))( y)

The semigroup with generator LH, in the set up of [2], corresponds to
a Markov process on the boundary, which is the trace on aD of the dif-
fusion determined by [7], described by a time scale called the local time
on the boundary. This was conjectured and proved in a special case
in [2], and extended by K. Sato [3] and then by P. Priouret [4] or a
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wide class of Wentzell’s boundary conditions.)

For the wave equation, a kind of duality i appearence between (2)
and (5) seems to suggest, as in the case of diffusion, that the solution

o (4), or the group o operators with generator ((.-(.. , des-
/

cribes the wave propagation restricted on the boundary, depending on
a time scale or the boundary 3D. Here, it is expected that the bound-
ary has a mass distributed according to the measure (x)dx, and the
wave propagates through 3D partly by the vibration of the boundary
itsel determined by the term

(x) 2u (x) + F, (x)(x),
just as the wave propagation in D is determined by

Au(x)-- a(x) 3u (x) + b(x)(x).xx
The classical terms ’(x)u(x) and lu(X)n(X) correspond to the energy

loss and the reflection at D, respectively. By the last term of Lu(x),
a wave arrived at point x on 3D instantly gives effect on the support
of the measure ,(x,.).

In the case of diffusion equation, the above explanations are justi-
fled rigorously on the basis of path spaces and the related mathematical
tools. On the other hand, it seems that a parallel justification or the
wave equation is not possible at present. Some mathematical method
for a more detailed description of the wave propagation is desired.
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