# 64. Wave Equation with Wentzell's Boundary Condition and a Related Semigroup on the Boundary. II 

By Tadashi Ueno<br>The College of General Education, University of Tokyo

(Comm. by Kôsaku Yosida, m. J. A., April 18, 1974)

1. In part I of this paper [1], we defined a closure $\bar{A}_{L}$ of $A$ with respect to Wentzell's boundary condition

$$
L u(x)=0, \quad x \in \partial D,
$$

and solved the wave equation

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} u=\bar{A}_{L} u, \quad u(t, \cdot) \rightarrow f, \quad \frac{\partial}{\partial t} u(t, \cdot) \rightarrow g, \quad \text { as } t \rightarrow 0 \tag{1}
\end{equation*}
$$

by solving the equations of type
(2)

$$
\alpha u-\bar{A}_{L} u=v, \quad \text { for } v \in \mathscr{H},
$$

and using the scheme in 2 of [1].
Here, we consider $L$ as an operator which maps a function $u$ on $\bar{D}$ to a function $L u$ on $\partial D$, and define a closure $\bar{L}_{A}$ of $L$ with respect to the domain condition
(3) $\quad A u(x)=0, \quad x \in D$,
just as we defined $\bar{A}_{L}$. Since each function in $\mathscr{D}\left(\bar{L}_{A}\right)$ can be proved to satisfy (3), it is written as $H \varphi(x)=\int_{\partial D} H(x, d y) \varphi(y)$ by the boundary value $\varphi$ and the harmonic measure $H(x, \cdot)$ with respect to the domain $D$ and point $x .{ }^{1)} \quad$ Thus, we define $\overline{L H}$ by $\overline{L H} \varphi=\bar{L}_{A} H \varphi$ on $\left\{\varphi \in \mathcal{A}_{\partial} \mid H \varphi\right.$ $\left.\in D\left(\bar{L}_{A}\right)\right\}$, where $\mathscr{H}_{\partial}$ is the Hilbert space of all measurable functions on $\partial D$ such that $\|\varphi\|_{\partial}=\langle\varphi, \varphi\rangle^{\frac{1}{2}}<\infty$. Then, we can solve

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} \varphi=\overline{L H} \varphi, \quad \varphi(t, \cdot) \rightarrow \psi, \quad \frac{\partial}{\partial t} \varphi(t, \cdot) \rightarrow \eta, \quad \text { as } t \rightarrow 0, \tag{4}
\end{equation*}
$$

by using the scheme in 2 of [1] and solving the equations of type

$$
\begin{equation*}
\lambda[u]_{\partial}-\bar{L}_{A} u=\varphi, \quad \text { for } \varphi \in \mathscr{F}_{\partial}, \tag{5}
\end{equation*}
$$

where $[u]_{\partial}$ is the restriction of $u$ to the boundary $\partial D$.
It is expected that the mapping $L$ and the equation (4) have some intuitive meanings, closely related with (1). Some comments on this point will be added in comparison with equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \varphi=\overline{L H} \varphi, \quad \varphi(t, \cdot) \rightarrow \psi, \quad \text { as } t \rightarrow 0, \tag{6}
\end{equation*}
$$

1) The harmonic measure corresponds to $A=\Delta$. For a general $A$, a measure with similar properties exists, and it is sometimes called the hitting measure. In fact, this is the probability distribution of the first hit to the boundary of the diffusion particle corresponding to $A$ and started at point $x$.
which corresponds to the diffusion equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u=\bar{A}_{L} u, \quad u(t, \cdot) \rightarrow f, \quad \text { as } t \rightarrow 0 \tag{7}
\end{equation*}
$$

2. For $f, g$ in $\mathcal{H}_{0}$ and $\lambda \geqslant 0$, we define

$$
B^{\lambda}(f, g)=\lambda\langle f, g\rangle+D(f, g)+a \cdot D\langle f, g\rangle+\nu(f, g)
$$

By the known estimates
( 8) $\quad c\|f\|_{\partial}^{2} \leqslant\|f\|^{2}+D(f, f), \quad c\|f\|^{2} \leqslant\|f\|_{a}^{2}+D(f, f), \quad$ for $f \in \mathcal{H}_{0}$, $B^{2}(f, g)$ is equivalent with $B_{\alpha}(f, g)$ for positive $\lambda$ and $\alpha,{ }^{2)}$ as in

Proposition 1. $\langle\lambda f-L f, g\rangle-(A f, g)_{s}=B^{2}(f, g), f, g \in \mathcal{H}_{0}, \lambda \geqslant 0$. $B^{2}(f, g)$ can be extended uniquely to a bilinear functional on $\mathcal{K}$. The extension, under the same notation, satisfies
$B^{\lambda}(f, g) \leqslant c_{\lambda}\|f\|_{l}\|g\|_{l}, \quad\|f\|_{l}^{2} \leqslant c_{\lambda} B^{2}(f, f), \quad$ for $f, g \in \mathcal{K}$ and $\lambda>0$.
Proposition 2. If $\left\{f_{n}, n=1,2, \cdots\right\}$ in $\mathcal{H}_{0}$ and $\varphi \in \mathcal{H}_{\partial}$ satisfy $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{l}=0$ and $\lim _{n \rightarrow \infty}\left\{\left(A f_{n}, h\right)_{s}+\left\langle L f_{n}-\varphi, h\right\rangle\right\}=0$ for each $h \in \mathcal{H}_{0}$, then $\varphi=0$.

Definition 1. If, for $f \in \mathcal{K}$, there are a sequence $\left\{f_{n}, n=1,2, \cdots\right\}$ in $\mathcal{H}_{0}$ and $\varphi$ in $\mathcal{H}_{\partial}$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{l}=0$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\left(A f_{n}, h\right)_{s}+\left\langle L f_{n}-\varphi, h\right\rangle\right\}=0, \quad \text { for each } h \in \mathcal{H}_{0} \tag{9}
\end{equation*}
$$

then we define $\bar{A}_{L} f=\varphi$, and denote the set of all such $f$ by $\mathscr{D}\left(\bar{L}_{A}\right)$.
Proposition 3. $f$ in $\mathcal{K}$ belongs to $\mathscr{D}\left(\bar{L}_{A}\right)$, if and only if there is a $\varphi$ in $\mathcal{H}_{\partial}$ such that

$$
B^{2}(f, h)=\langle\varphi, h\rangle, \quad \text { for } h \in \mathscr{H}_{0} .
$$

In this case, $\varphi$ satisfies

$$
\lambda[f]_{\partial}-\bar{L}_{A} f=\varphi .
$$

Proposition 4. For each $\varphi \in \mathcal{H}_{\partial}$ and $\lambda>0$, (5) has a unique solution $f$ such that

$$
\|f\|_{l} \leqslant c_{\lambda}^{\prime}\|\varphi\|_{0}, \quad B^{\lambda}(f, g)=\langle\varphi, g\rangle \quad \text { for } g \in \mathcal{K} .
$$

Hence, $\lambda-\bar{L}_{A}$ maps $\mathscr{D}\left(\bar{L}_{A}\right)$ onto $\mathcal{H}_{\partial}$ in one to one way, and $\left(\lambda-\bar{L}_{A}\right)^{-1}$ is linear and bounded.

The proof is similar to the case of (2), considering $F(f)=\langle\varphi, f\rangle$ for $f \in \mathcal{K}$ in the place of $F(f)=(v, f)_{s}$ for Proposition 5 in [1].

Proposition 5. Each $f$ in $\mathscr{D}\left(\bar{L}_{A}\right)$ satisfies (3).
In fact, let $\left\{f_{n}\right\}$ be a sequence in $\mathscr{H}_{0}$ such that (9) holds, and let $h$ be in $\mathscr{H}_{0}$ and vanish near $\partial D$. Then, by Green-Stokes formula, we have
2) For a more general description, it is natural to define

$$
B_{\alpha}^{\lambda}(f, g)=\alpha(f, g)+\lambda\langle f, g\rangle+D(f, g)+a D\langle f, g\rangle+\nu(f, g),
$$

instead of introducing $B_{\alpha}(f, g)$ and $B^{x}(f, g)$ separately. Then, a duality between $\overline{A_{L}}$ and $\overline{L_{A}}$ extends to $\overline{A_{L-2}}$ and $\overline{L_{A-\alpha}}$, and a relation between $G_{\alpha}$ and $\overline{L H_{\alpha}}$ can be discussed as in [2]. But, this is not necessary for our present purpose, and we omit it.

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty}\left\{\left(A f_{n}, h\right)_{s}+\left\langle L f_{n}-\bar{L}_{A} f, h\right\rangle\right\} \\
& =\lim _{n \rightarrow \infty}\left(A f_{n}, h\right)_{s}=\lim _{n \rightarrow \infty}\left(f_{n}, A h\right)=(f, A h),
\end{aligned}
$$

which implies the above assertion.
3. Semigroup on the boundary. Since $\bar{D}$ is compact and $\partial D$ is smooth, there is a unique solution of

$$
A u(x)=0, \quad x \in D, \quad u(x)=\varphi(x), \quad x \in \partial D, \quad \text { for } \varphi \in C(\partial D) .
$$

The solution is written as $u(x)=H \varphi(x)=\int_{\partial D} H(x, d y) \varphi(y)$ by a measure $H(x, \cdot)$ on $\partial D$ with total mass 1 . By the known estimate
(10) $\quad\|H \varphi\| \leqslant c^{\prime}\|\varphi\|_{\partial}$, for $\varphi \in C(\partial D)$,
$H$ can be extended uniquely to a bounded linear mapping from $\mathscr{H}_{\partial}$ to $\mathcal{H}$. The extension, under the same notation, satisfies

$$
\|H \varphi\|_{s} \leqslant c^{\prime \prime}\|\varphi\|_{\partial}, \quad \varphi \in \mathcal{H}_{\partial} .
$$

We write $\mathcal{H}_{0, \partial}$ for the set of all [ $\left.f\right]_{\partial}$ of $f$ in $\mathcal{H}_{0}$, that is, $\mathcal{H}_{0, \partial}$ $=\left\{[f]_{\partial} \mid f \in \mathcal{H}_{0}\right\}$. We define, for $\varphi, \psi$ in $\mathcal{H}_{0,0}$,

$$
\begin{aligned}
B_{l}\langle\varphi, \psi\rangle & =B^{\lambda}(H \varphi, H \psi) \\
\langle\varphi, \psi\rangle_{l} & =B_{1}\langle\varphi, \psi\rangle, \quad\|\varphi\|_{l, 0}=\langle\varphi, \varphi\rangle_{l}^{\frac{1}{2}} .
\end{aligned}
$$

Let $\mathcal{K}_{\partial}$ be the completion of $\mathcal{H}_{0, \partial}$ with respect to $\left\|\|_{l, \partial} . B_{\lambda}(\cdot, \cdot),\langle\cdot, \cdot\rangle_{l}\right.$ and $\left\|\|_{l, 0}\right.$, are extended on $\mathcal{K}_{\partial} . \mathcal{K}_{\partial}$ is imbedded in $\mathcal{F}_{\partial}$ as a dense subset.

Proposition 6. For $f$ in $\mathcal{K},[f]_{\partial}$ belongs to $\mathcal{K}_{\partial}$.
In fact, there is a sequence $\left\{f_{n}\right\}$ in $\mathcal{H}_{0}$ such that $\left\|f_{n}-f\right\|_{l} \rightarrow 0$. But, an arbitrary $h$ in $\mathcal{H}_{0}$ is written as $h=H[h]_{\partial}+g$, where $g=h-H[h]_{\partial}$ is smooth and vanishes on $\partial D$. Since $H[h]_{\partial}$ satisfies (3), $D\left(H[h]_{\partial}, g\right)=0$. Thus, by a simple computation using (8),

$$
\|h\|_{l}^{2}=\left\|H[h]_{\partial}\right\|_{l}^{2}+D(g, g) \geqslant\left\|H[h]_{\partial}\right\|_{l}^{2} \geqslant \frac{1}{2} \min (c, 1)\left\|[h]_{\partial}\right\|_{i, \partial}^{2} .
$$

This, applied for $h=f_{m}$ or $f_{n}$, implies $\lim _{m \rightarrow \infty, n \rightarrow \infty}\left\|\left(f_{m}\right)_{\partial}-\left(f_{n}\right)_{l, a}\right\|$ $\leqslant c^{\prime} \cdot \lim _{m \rightarrow \infty, n \rightarrow \infty}\left\|f_{n}-f_{m}\right\|_{l}=0$. Thus, $\left[f_{n}\right]_{\partial}$ converges to a limit in $\mathcal{K}_{\partial}$, which coincides with $[f]_{\partial}$ by $c\left\|[f]_{\partial}-\left[f_{n}\right]_{\partial}\right\|_{\partial} \leqslant\left\|f_{n}-f\right\|_{l} \rightarrow 0$.

Definition 2. Let $\mathscr{D}(\overline{L H})$ be the set of all $\varphi$ in $\mathscr{H}_{\partial}$ such that $H \varphi \in \mathscr{D}\left(\bar{L}_{A}\right)$. We define $\overline{L H} \varphi=\bar{L}_{A} H \varphi$, for $\varphi \in \mathscr{D}(\overline{L H})$.
$\mathscr{D}(\overline{L H})$ is contained in $\mathcal{K}_{\partial}$. In fact, for each $\varphi$ in $\mathscr{D}(\overline{L H}), H \varphi$ is in $\mathscr{D}\left(\bar{L}_{A}\right)$, and hence in $\mathcal{K}$. Thus, by Proposition 6, $[H \varphi]_{\partial}=\varphi$ is in $\mathcal{K}_{\partial}$.

Here, we rewrite Proposition 4 as in
Lemma 1. (11) $\langle\lambda \varphi-\overline{L H} \varphi, \psi\rangle=B_{\lambda}\langle\varphi, \psi\rangle$, for $\varphi \in \mathscr{D}(\overline{L H}), \psi \in \mathcal{K}_{\partial}$. There is a unique solution of

$$
\lambda \varphi-\overline{L H} \varphi=\psi, \quad \text { for each } \psi \in \mathcal{H}_{\partial} \text { and } \lambda>0 .
$$

Thus, $K_{\lambda}=(\lambda-\overline{L H})^{-1}$ is defined on $\mathcal{H}_{\partial}$, and maps $\mathcal{H}_{\partial}$ onto $\mathscr{D}(\overline{L H})$ in one to one way, satisfying
$\left\|K_{\lambda} \psi\right\|_{2, \partial} \leqslant c^{\prime \prime}\|\psi\|_{\partial}, \quad B_{\lambda}\left\langle K_{\lambda} \psi, \eta\right\rangle=\langle\psi, \eta\rangle \quad$ for each $\eta \in \mathcal{K}_{\partial}$.

Proposition 7. For $\varphi=K_{\lambda} \psi$, we have

$$
\begin{gathered}
\lambda\|\varphi\|_{\partial}^{2}+\left(\|\varphi\|_{l, \partial}^{2}-\|\varphi\|_{\partial}^{2}\right)=\langle\varphi, \psi\rangle \quad \text { for } \psi \in \mathcal{H}_{\partial} . \\
\|\psi-\lambda \varphi\|_{\partial}^{2}+\lambda\left(\|\varphi\|_{i, 2}^{2}-\|\varphi\|_{\partial}^{2}\right)=\langle\varphi, \psi\rangle_{l}-\langle\varphi, \psi\rangle, \quad \text { for } \psi \in \mathcal{K}_{\partial} .
\end{gathered}
$$

$$
\lambda\|\psi-\lambda \varphi\|_{l}^{2}+\left(\|\psi-\lambda \varphi\|_{2, \partial}^{2}-\|\psi-\lambda \varphi\|_{\partial}^{2}\right)=\langle\lambda \varphi-\psi, \overline{L H} \psi\rangle, \quad \text { for } \psi \in \mathscr{D}(\overline{L H})
$$

These are proved by using (11). Combining these equalities, we have

Lemma 2. $\lambda\left\|K_{\lambda} \varphi\right\|_{\partial} \leqslant\|\varphi\|_{\partial}, \lim _{\lambda \rightarrow \infty}\left\|\lambda K_{\lambda} \varphi-\varphi\right\|_{\partial}=0$, for $\varphi \in \mathcal{S}_{\partial}$.

$$
\lambda\left\|K_{\lambda} \varphi\right\|_{l, \partial} \leqslant\|\varphi\|_{l, \partial}, \quad \lim _{\lambda \rightarrow \infty}\left\|\lambda K_{\lambda} \varphi-\varphi\right\|_{l, \partial}=0, \quad \text { for } \varphi \in \mathcal{K}_{\partial}
$$

Theorem 1. $\overline{L H}$ is the generator of a semigroup $\left\{\tilde{T}_{t}, t \geqslant 0\right\}$ on $\mathcal{H}_{a}$, which satisfies $(A, 2)$ and $(A, 3)$ in 2 of (1). $(A, 1),(A, 2)$ and $(A, 5)$ are satisfied for $\mathcal{A}=\overline{L H}$ and for $\mathcal{H}_{\partial}$ and $\mathcal{K}_{\partial}$, replaced in the place of $\mathcal{H}$ and $\mathcal{K}$. Hence, there is a group of bounded linear operators $\left\{\tilde{U}_{t},-\infty\right.$ $<t<\infty\}$ on the space $\widetilde{\boldsymbol{B}}=\binom{\mathcal{K}_{\partial}}{\mathcal{A}_{\partial}}$ with norm $\left\|\binom{\varphi}{\psi}\right\|=\left(\|\varphi\|_{i, \partial}^{2}+\|\psi\|_{\partial}^{2}\right)^{\frac{1}{2}} . \quad\left\{\tilde{U}_{t}\right\}$ satisfies $\left\|\tilde{U}_{t}\right\| \leqslant e^{b^{\prime \prime} t}$ and has generator $\tilde{\boldsymbol{G}}$ :

$$
\widetilde{\boldsymbol{G}}\binom{\varphi}{\psi}=\binom{\psi}{\overline{L H} \varphi}, \quad \text { for } \quad\binom{\varphi}{\psi} \in \mathscr{D}(\widetilde{\boldsymbol{G}})=\binom{\mathscr{D}(\overline{L H})}{\mathcal{K}_{\partial}} .
$$

Hence, the unique solution of (4) is given by $\tilde{U}_{t}\binom{\psi}{\eta}$ for $\psi \in \mathscr{D}(\overline{L H})$ and $\eta \in \mathcal{K}_{\partial}$.

The proof is similar to that of Theorem 2 in (1).
4. In the case of the diffusion equation, the terms in $L u(x)$ have the intuitive meanings : $\quad \sum \alpha_{i j}(x) \frac{\partial^{2} u}{\partial \xi_{i} \partial \xi_{j}}(x)+\sum \beta_{i}(x) \frac{\partial u}{\partial \xi_{i}}(x)$ corresponds to the diffusing along the boundary $\partial D, \gamma(x) u(x)$ to the vanishing of the particle at $\partial D, \delta(x) A u(x)$ to the sticky barrier where the particle spends time comparably long with the stay in the domain $D . \mu(x) \frac{\partial u}{\partial n}(x)$ corresponds to the reflection at $\partial D$, and the last term to the jump $\partial D$ according to the measure $\nu(x, \cdot)$.

For a smooth function $\varphi$ on $\partial D, \overline{L H} \varphi$ can be represented as

$$
\begin{aligned}
\overline{L H} \varphi(x)= & \sum \tilde{\alpha}_{i j}(x) \frac{\partial^{2} \varphi}{\partial \xi_{i} \partial \xi_{j}}(x)+\sum \tilde{\beta}_{i}(x) \frac{\partial \varphi}{\partial \xi_{i}}(x)+\tilde{\gamma}(x) \varphi(x) \\
& +\int_{\partial D}\left(\varphi(y)-\varphi(y)-\sum \frac{\partial \varphi}{\partial \xi_{i}}(x) \xi_{i}(x, y)\right) \tilde{\sim}(x, d y)
\end{aligned}
$$

The semigroup with generator $\overline{L H}$, in the set up of [2], corresponds to a Markov process on the boundary, which is the trace on $\partial D$ of the diffusion determined by [7], described by a time scale called the local time on the boundary. This was conjectured and proved in a special case in [2], and extended by K. Sato [3] and then by P. Priouret [4] for a
wide class of Wentzell's boundary conditions. ${ }^{3)}$
For the wave equation, a kind of duality in appearence between (2) and (5) seems to suggest, as in the case of diffusion, that the solution of (4), or the group of operators with generator $\tilde{\boldsymbol{G}}\binom{\varphi}{\psi}=\binom{\psi}{L H}$, describes the wave propagation restricted on the boundary, depending on a time scale for the boundary $\partial D$. Here, it is expected that the boundary has a mass distributed according to the measure $\delta(x) d x,{ }^{4)}$ and the wave propagates through $\partial D$ partly by the vibration of the boundary itself determined by the term

$$
\sum \alpha_{i j}(x) \frac{\partial^{2} u}{\partial \xi_{i} \partial \xi_{j}}(x)+\sum \beta_{i}(x) \frac{\partial u}{\partial \xi_{i}}(x),
$$

just as the wave propagation in $D$ is determined by

$$
A u(x)=\sum a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x)+\sum b_{i}(x) \frac{\partial u}{\partial x_{i}}(x)
$$

The classical terms $\gamma(x) u(x)$ and $\mu(x) \frac{\partial u}{\partial n}(x)$ correspond to the energy loss and the reflection at $\partial D$, respectively. By the last term of $L u(x)$, a wave arrived at point $x$ on $\partial D$ instantly gives effect on the support of the measure $\nu(x, \cdot)$.

In the case of diffusion equation, the above explanations are justified rigorously on the basis of path spaces and the related mathematical tools. On the other hand, it seems that a parallel justification for the wave equation is not possible at present. Some mathematical method for a more detailed description of the wave propagation is desired.

## References

[1] T. Ueno: Wave equation with Wentzell's boundary condition and a related semigroup on the boundary. I. Proc. Japan Acad., 49, 672-677 (1973).
[2] -: The diffusion satisfying Wentzell's boundary condition and the Markov process on the boundary. I, II. Proc. Japan Acad., 36, 533-538, 625-629 (1960).
[3] K. Sato: Time change and killing for multi-dimensional reflecting diffusion. Proc. Japan Acad., 39, 69-73 (1963).
[4] P. Priouret: Processus de Markov sur une variété à bord compacte. Ann. l'Inst. H. Poincaré, 4, 193-253 (1968).
[5] K. Sato: A decomposition of Markov processes. J. Math. Soc. Japan, 17, 219-243 (1965).

[^0][6] M. Motoo: Application of additive functionals to the boundary problem of Markov processes (Lévy's system of $U$-processes). Proc. 5-th Berkeley Symp., 2, Part II, 75-110 (1967).
[7] W. Feller: On the equation of the vibrating string. J. Math. Mech., 8, 339-348 (1959).


[^0]:    3) Markov process on the boundary can be obtained by a purely probabilistic approach as in K. Sato [5] and M. Motoo [6], by defining the local time on the boundary first.
    4) This interpretation of the term $\delta(x) A u(x)$ was given by Feller [7] in one dimension. In view of the definition of $\mathscr{I}$, this naturally extends to the general case.
