60. Elements of Finite Order in an Ordered Semigroup Whose Product is of Infinite Order

By Tôru Saitô
Tokyo Gakugei University
(Comm. by Kenjiro Shoda, M. J. A., April 18, 1974)

We use the terminology and notation in [1] freely. By an ordered semigroup we mean a semigroup with a simple order which is compatible with the semigroup operation. Let a be an element of an ordered semigroup $S . a$ is called positive [negative; nonnegative; nonpositive $]$ if $a<a^{2}\left[a^{2}<a ; a \leq a^{2} ; a^{2} \leq a\right]$. The number of distinct powers of a is called the order of a. The semigroup S is called nonnegatively ordered if all elements of S are nonnegative.

In [8], we gave the property that the set of all elements of finite order of a nonnegatively ordered semigroup S forms a subsemigroup of S, if it is nonempty. This property does not hold in general in ordered semigroups not necessarily nonnegatively ordered. In fact, Kuroki [2] gave the ordered semigroup K consisting of elements

$$
\begin{aligned}
e<x<u_{1}<u_{2}<\cdots & <r_{1}<r_{2}<\cdots \\
& <g<h<s_{1}<s_{2}<\cdots<y<v_{1}<v_{2}<\cdots<f
\end{aligned}
$$

with the multiplication table

	e	x	u_{j}	r_{j}	g	h	s_{j}	y	v_{j}	f
e										
x	e	e	e	e	e	e	u_{j}	r_{1}	r_{j+1}	g
u_{i}	e	e	e	e	e	e	u_{i+j}	r_{i+1}	r_{i+j+1}	g
r_{i}	e	u_{i}	u_{i+j}	r_{i+j}	g	g	g	g	g	g
g										
h										
s_{i}	h	h	h	h	h	h	s_{i+j}	v_{i}	v_{i+j}	f
y	h	s_{1}	s_{j+1}	v_{j}	f	f	f	f	f	f
v_{i}	h	s_{i+1}	s_{i+j+1}	v_{i+j}	f	f	f	f	f	f
f										

and the ordered semigroup K^{\prime} arising from K by identifying the elements g and h, as examples of ordered semigroups in which the elements x and y are elements of finite order but the element $r_{1}=x y$ is an element of infinite order.

In this paper we consider conversely and prove the following
Theorem. Let x and y be elements of finite order of an ordered semigroup S such that $x \leq y, x y \leq y x$ and $x y$ is a positive element of in-
finite order. Then the subsemigroup T generated by elements x and y is isomorphic to either one of ordered semigroups K and K^{\prime}.

Proof. We denote by m and n the orders of elements x and y, respectively. Since $x y$ is positive, we have $x y<x y x y$ and so
(1) $\quad x<x y x$ and $y<y x y$.

Hence $y<y x y \leq y^{3}$ and so
(2)
y is positive.
If x were nonnegative, then by [8] Lemma 4.7, $x y$ would be an element of finite order, contradicting the assumption. Hence
(3) x is negative.
Put $e=x^{m}$ and $f=y^{n}$. Then clearly
(4) $\quad e$ and f are idempotents.

For every natural number i, we have $x(y x)^{i} y=(x y)^{i+1}<(x y)^{i+2}=x(y x)^{i+1} y$ and so $(y x)^{i}<(y x)^{i+1}$. Hence
(5) $y x$ is a positive element of infinite order.

By way of contradiction, we assume that $y \leq(y x)^{i}$ for some natural number i. Then $y \leq(y x)^{i} \leq y^{2 i}$ and so y and $y x$ lie in the same archimedean class. This contradicts [6] Theorem 3, since y is an element of finite order and by (5) $y x$ is an element of infinite order. Hence
(6) $\quad(y x)^{i}<y \quad$ for every natural number i.

By (1) we have $y<y(x y) \leq y(y x)=y^{2} x$. Hence $f=y^{n} \leq y^{n+1} x \leq y^{n+2} \leq f^{n+2}$ $=f$. Hence $f=y^{n+1} x=f x$. Also $f y=y^{n+1}=f$. Hence
(7) for every $w \in T$.

By (7) $(w f)^{2}=w f w f=w f$. Hence
(8) $\quad w f$ is an idempotent for every $w \in T$.

By [4] Corollary of Lemma 1, the set of idempotents of S forms a subsemigroup of S, which we denote by E. By way of contradiction we assume that $y x \leq y e f$. Then by (8) yef is an idempotent and so $(y x)^{m n+1}$ $\leq(y e f)^{m n+1}=y e f$. On the other hand, by (7) and (4) yef=yefx $=y x^{m n} y^{m n} x \leq y(x y)^{m n} x=(y x)^{m n+1}$. Hence we have yef $=(y x)^{m n+1}$. But this is a contradiction, since by (5) $y x$ is an element of infinite order and by (8) yef is an idempotent. Hence we have yef $<y x$ and so ef $<x$. Since $e, f \in E$, we have $e f \in E$. Hence $e=x^{m}=x^{m+1} \leq x^{m} y=e y \leq e y^{n}$ $=e f=(e f)^{m} \leq x^{m}=e$ and so $e y=e$. Also $e x=x^{m+1}=x^{m}=e$. Hence
(9) $e w=e \quad$ for every $w \in T$.
By (7) and (9) $e f=e$ and $f e=f$ and so $e \mathcal{L} f$ in the semigroup E. Also by (2) and (3) $e=x^{m}<x<y<y^{n}=f$. Hence by [8] Lemma 1.13 and its dual we have

$$
\begin{equation*}
m=n=2 \tag{10}
\end{equation*}
$$

By (1) $y<y x y \leq y x y^{2}=y x f$. Hence $f=y^{2} \leq(y x f)^{2}=y x f \leq y^{2} f=f$ and so (11)

$$
y x f=f .
$$

By (6) $x y e=x y x^{2} \leq x y x \leq x y$. But by (9) $x y e$ is an idempotent and by
assumption $x y$ is an element of infinite order. Hence $x y>x y e=x y e y$ by (9). Therefore $x y e<x$. Hence $e=x^{2} e \leq x y e=(x y e)^{2} \leq x^{2}=e$ and so (12) $x y e=e$.
Since $x y$ and $y x$ are elements of infinite order, we have $(x y)^{i} x y=(x y)^{i+1}$ $<(x y)^{i+2}=(x y)^{i+1} x y$ and $(y x)^{i} y x=(y x)^{i+1}<(y x)^{i+2}=(y x)^{i+1} y x$. Hence

$$
\begin{equation*}
(x y)^{i} x<(x y)^{i+1} x \quad \text { and } \quad(y x)^{i} y<(y x)^{i+1} y \tag{13}
\end{equation*}
$$ for every natural number i.

By (12) and (1) we have $(x y)^{i} x^{2}=(x y)^{i} e=e<x<x y x$. Hence
(14) $\quad(x y)^{i} x<x y \quad$ for every natural number i.

By (5) and (7) we have $(y x)^{i} y x=(y x)^{i+1}<f=f x$. Hence
(15) $\quad(y x)^{i} y<f \quad$ for every natural number i.

Put $h=y e$. Then by (9) h is an idempotent. Also $x(x f)=e f=e<x y$ and so $x f<y$. Hence $x f=x f e \leq y e$. Thus

$$
\begin{equation*}
g \leq h . \tag{16}
\end{equation*}
$$

Put $u_{i}=(x y)^{i} x, r_{i}=(x y)^{i}, s_{i}=(y x)^{i}$ and $v_{i}=(y x)^{i} y$. Now it is easy to check the conclusion of the theorem.

Remark. It is easily seen that four idempotents e, f, g and h lie in the same \mathcal{L}-class in the semigroup E and $\{e, g\}$ and $\{h, f\}$ are consecutive pairs of elements on the \mathcal{L}-class.

References

[1] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups, Vol. I. Amer. Math. Soc. Providence, R. I. (1961).
[2] N. Kuroki: On Ordered Semigroups. Master Thesis, Tokyo Gakugei University (1969).
[3] T. Saitô: Ordered idempotent semigroups. J. Math. Soc. Japan, 14, 150169 (1962).
[4] -: Regular elements in an ordered semigroup. Pacific J. Math., 13, 263295 (1963).
[5] -: The archimedean property in an ordered semigroup. J. Austral. Math. Soc., 8, 547-556 (1968).
[6] -: Note on the archimedean property in an ordered semigroup. Proc. Japan Acad., 46, 64-65 (1970).
[7] -: Note on the archimedean property in an ordered semigroup. Bull. Tokyo Gakugei Univ. Ser. IV, 22, 8-12 (1970).
[8]
-: Archimedean classes in a nonnegatively ordered semigroup (to appear).

