82. The Connection between the Order and the Diameter of a Neighborhood in a Vector Space

By Masatoshi Nakamura
Kobe University
(Comm. by Kinjirô Kunugı, M. J. A., June 11, 1974)

In this paper, we investigate the connection between the order and the convergence exponent of the diameter of a bounded set in a normed space. We apply then the obtained results to a locally convex topological vector space.

1. Let E be a vector space over the field of real or complex numbers and A and B arbitrary sets in E.

For each positive number ε, let $M(A, B ; \varepsilon)$ be the supremum of all natural numbers m, for which there exist elements $x_{1}, \cdots, x_{m} \in A$ with $x_{i}-x_{j} \notin \varepsilon B$ for $i \neq j(1 \leqq i, j \leqq m)$. Let $\rho(A, B)$ be the infimum of all positive numbers ρ, for which there is a positive number ε_{0} such that $M(A, B ; \varepsilon)<\exp \left(\varepsilon^{-\rho}\right)$ for $0<\varepsilon<\varepsilon_{0}$. If no number ρ with the given property exists we set $\rho(A, B)=+\infty$. We then call $\rho(A, B)$ the order of A with respect to B; as is easily seen, we have

$$
\rho(A, B)=\varlimsup_{\varepsilon \rightarrow 0}\left\{\log \log M(A, B ; \varepsilon) / \log \varepsilon^{-1}\right\} .
$$

The infimum $\delta_{n}(A, B)$ of all positive numbers δ, for which there is a vector subspace F of E of dimension at most n with $V \subset \delta U+F$ is called the n-th diameter of A with respect to B.

Let a_{1}, a_{2}, \cdots be a sequence of positive numbers converging to zero. We call the infimum λ, of those values μ for which the series $\sum_{n=1}^{\infty} a_{n}^{\mu}$ converges, the exponent of convergence of the sequence $\left\{1 / a_{n}\right\}$, and we call the exponent of convergence of the sequence $\left\{\log {a_{n}^{-1}}^{-1}\right.$ the convergence type of the sequence $\left\{a_{n}\right\}$. Let ε be a positive number, then we have the following two lemmas.

Lemma 1. Let λ be the exponent of convergence of the sequence $\left\{1 / a_{n}\right\}$. Then $\lambda=\varlimsup_{\varepsilon \rightarrow 0}\left\{\log m(\varepsilon) / \log \varepsilon^{-1}\right\}$, where $m(\varepsilon)$ denotes the number of terms of the sequence $\left\{a_{n}\right\}$ which are greater than ε.

For a proof see [1], p. 89.
Lemma 2. Let τ be the convergence type of the sequence $\left\{a_{n}\right\}$. Then

$$
\tau=\varlimsup_{\varepsilon \rightarrow 0}\left\{\log m(\varepsilon) / \log \log \varepsilon^{-1}\right\} .
$$

Proof. Applying Lemma 1 to the sequence $\left\{\log {a_{n}^{-1}}^{-1}\right.$, we see that $\tau=\varlimsup_{i \rightarrow 0}\left\{\log l(\delta) / \log \delta^{-1}\right\}(\delta>0)$, where $l(\delta)$ is the number of terms of $\left\{\log {a_{n}^{-1}}^{\prime}\right.$ greater than δ. But obviously $l(\delta)=m\left(e^{-1 / \delta}\right)$. Therefore

$$
\tau=\varlimsup_{\delta \rightarrow 0}\left\{\log m\left(e^{-1 / \delta}\right) / \log \delta^{-1}\right\} .
$$

Replacing $e^{-1 / 8}$ by ε, we obtain the lemma.
Let E be a real normed space and U the closed unit ball of E. Then we have the following lemmas.

Lemma 3. For each bounded subset B of $E, \delta_{n}(B, U) \leqq \varepsilon / 4$ implies the inequality

$$
M(B, U ; \varepsilon) \leqq\left(4 \delta_{0}(B, U) \varepsilon^{-1}+2\right)^{n}
$$

This is shown by a modification of Lemma 1 (p. 144) of [4].
Lemma 4. For each absolutely convex bounded subset B of E, the inequality

$$
\delta_{0}(B, U) \cdots \delta_{n}(B, U) \leqq(n+1)!\varepsilon^{n+1} M(B, U ; \varepsilon)
$$

is valid for all non-negative integers n and $\varepsilon>0$.
For a proof see [4], p. 145.
Lemma 5. Let B be an absolutely convex bounded subset of E, and let λ be the exponent of convergence of the sequence $\left\{\delta_{n}(B, U)^{-1}\right\}$. Then $\rho(B, U) \leqq \lambda$. If $\rho(B, U)<1$, then

$$
\lambda \leqq \rho(B, U) /\{1-\rho(B, U)\}
$$

Proof. First, for any $\varepsilon>0$, let $m(\varepsilon)$ be the number of terms of the sequence $\left\{\delta_{n}(B, U)\right\}$ which are greater than ε. Since $m(\varepsilon / 4)=n$ implies $\delta_{n}(B, U) \leqq \varepsilon / 4$, we have

$$
M(B, U ; \varepsilon) \leqq\left(4 \delta_{0}(B, U) \varepsilon^{-1}+2\right)^{n}
$$

by Lemma 3. Therefore

$$
\{\log \log M(B, U ; \varepsilon)\} / \log \varepsilon^{-1} \leqq \log m(\varepsilon / 4) / \log \varepsilon^{-1}+\gamma(\varepsilon),
$$

where $\gamma(\varepsilon)=\left\{\log \log 6 \delta_{0} \varepsilon^{-1}\right\} / \log \varepsilon^{-1}$. But, then since $\lim _{s \rightarrow 0} \gamma(\varepsilon)=0$, we obtain $\rho(B, U) \leqq \lambda$ by Lemma 1 .

Next, let $\rho(B, U)<1$, then for any ρ^{\prime} with $\rho(B, U)<\rho^{\prime}<1$, there exist $\varepsilon_{0}>0$ and ρ such that $\rho(B, U) \leqq \rho<\rho^{\prime}$ and $M(B, U ; \varepsilon) \leqq \exp \left(\varepsilon^{-\rho}\right)$ for all ε with $0<\varepsilon<\varepsilon_{0}$. Put $\mu=\rho /\{1-\rho\}$. If n_{0} is an integer with $\left(n_{0}+1\right)^{(1 / \mu+1)} \varepsilon_{0}>1$ then

$$
\delta_{n}(B, U) \leqq e(n+1)^{-1 / \mu} \quad \text { for all } n \geqq n_{0} .
$$

In fact, if $\delta_{m}(B, U)>e(m+1)^{-1 / \mu}$ for some integer $m \geqq n_{0}$ we obtain the inequality

$$
e^{m+1}(m+1)^{-(m+1) / \mu}<\delta_{0}(B, U) \cdots \delta_{m}(B, U) \leqq(m+1)!\varepsilon^{m+1} M(B, U ; \varepsilon)
$$

on the basis of Lemma 4. If we put $\varepsilon=(m+1)^{-(1 / \mu+1)}$, then the estimates $M(B, U ; \varepsilon) \leqq \exp \left\{(m+1)^{\rho(1 / \mu+1)}\right\}$ and $(m+1)!\leqq(m+1)^{m+1}$ together with multiplication by $(m+1)^{-(m+1) / \mu}$ and taking natural logarithmus lead to the contradiction $m+1<(m+1)^{\rho(1 / \mu+1)}=m+1$.

Therefore, for each μ^{\prime} with $\mu^{\prime}>\mu$ we have

$$
\sum_{n=n_{0}}^{\infty} \delta_{n}(B, U)^{\mu^{\prime}} \leqq e \sum_{n=n_{0}}^{\infty}(n+1)^{-\mu^{\prime} / \mu}<\infty .
$$

Thus we obtain the inequality $\lambda \leqq \mu$, and so the second inequality in the lemma holds.

Remark. B. S. Mityagin [2] has proved Lemma 5 for a compact set B.
2. In this section we consider a locally convex topological vector space E over the field of real or complex numbers. Let U and V be two zero neighborhoods of E such that V is absorbed by U. Then, from Lemma 5 the following theorem holds.

Theorem 1. Let λ be the exponent of convergence of the sequence $\left\{\delta_{n}(V, U)^{-1}\right\}$. Then $\rho(V, U) \leqq \lambda$. If $\rho(V, U)<1$, then

$$
\lambda \leqq \rho(V, U) /\{1-\rho(V, U)\} .
$$

A locally convex space E is called s-nuclear (cf. [4], p. 161) if for each zero neighborhood U of E, there exists a zero neighborhood V of E such that V is absorbed by U and the canonical mapping from $E(V)$ onto $E(U)$ is of type s. We have the following

Corollary. A locally convex space E is s-nuclear if and only if each zero neighborhood U contains a zero neighborhood V such that $\rho(V, U)=0$.

Proof. E is s-nuclear if and only if for each zero neighborhood U, there is a zero neighborhood V with $V \subset U$ such that the sequence $\left\{\delta_{n}(V, U)\right\}$ is rapidly decreasing by Lemma 1 of [3]. But $\left\{\delta_{n}(V, U)\right\}$ is rapidly decreasing if and only if $\lambda=0$, and $\lambda=0$ if and only if $\rho(V, U)$ $=0$ by Theorem 5, where λ is the exponent of convergence of the sequence $\left\{\delta_{n}(V, U)^{-1}\right\}$.

Theorem 2. Let U and V be two zero neighborhoods of a locally convex space E such that V is absorbed by U, and let $\tau(V, U)$ be the convergence type of the sequence $\left\{\delta_{n}(V, U)\right\}$ and

$$
\sigma(V, U)=\varlimsup_{\varepsilon \rightarrow 0}\left\{\log \log M(V, U ; \varepsilon) / \log \log \varepsilon^{-1}\right\}
$$

Then we have

$$
\sigma(V, U) \leqq \tau(V, U)+1
$$

Proof. Let $m(\varepsilon)=\sup \left\{n ; \delta_{n}(V, U)>\varepsilon\right\}$ and $m(\varepsilon / 4)=n-1$. Then $\delta_{n}(V, U) \leqq \varepsilon / 4$. Therefore $M(V, U ; \varepsilon) \leqq\left(4 \delta_{0}(V, U) \varepsilon^{-1}+2\right)^{n}$ by Lemma 3 . From this it follows that
$\log \log M(V, U ; \varepsilon) \leqq \log \{m(\varepsilon / 4)+1\}+\log \left(\log 6 \delta_{0}(V, U)+\log \varepsilon^{-1}\right)$.
But $\tau(V, U)=\varlimsup_{\varepsilon \rightarrow 0}\left\{\log m(\varepsilon / 4) / \log \log \varepsilon^{-1}\right\}$ by Lemma 2. Thus the relation $\sigma(V, U) \leqq \tau(V, U)+1$ is proved.

Remark. For a vector space with a bornological structure, replacing two neighborhoods of the theorems above by two absolutely convex bounded sets, we can similarly show that the theorems above are valid for such a space.

References

[1] I. M. Gel'fand and N. Ya. Vilenkin: Generalized Functions. 4. Academic Press, New York and London (1964).
[2] B. S. Mityagin: Relationship between the ε-entropy, approximation rate, and nuclearity of a compactum in a linear space. Soviet Math. Doklady, 1, 1140-1143 (1961).
[3] M. Nakamura: Sur une caractérisation d'espaces \boldsymbol{S}-nucléaires. Mathematics Seminar Notes (Kobe Univ.), 1 (1973).
[4] A. Pietsch: Nukleare lokalkonvexe Räume. Academie-Verlag, Berlin (1969).

