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77. Oscillation Theorems for Second Order Differential
Equations with Retarded Argument

By Taka8i KusaNo* and Hiroshi ONOSE**

(Comm. by Kosaku YosIpa, M. J. A., June 11, 1974)

Introduction. In this paper we are concerned with the oscillatory
behavior of solutions of the differential equation with retarded argu-
ment
(A) (@' @) +a) f(x(9(t))=0,
where the following conditions are always assumed to hold:

(a) () e CY0, ), r(t)>0;

(b) a(t) € C(0, 00), a(t)=0;

(© 9() e CY 0, 0), g)<t, 9'(H) =0, ltim 9g(t)=0c0;

d) S e C(—o00,00)NC(—00,0)NC(0,00), yf () >0, f'(y) =0 for
y+0.
We consider only those solutions of (A) which are defined and nontrivial
for all sufficiently large . Such a solution is called oscillatory if it
has arbitrarily large zeros; otherwise, it is called nonoscillatory.
Our purpose here is to present criteria (sufficient conditions) for
> dt

all solutions of (A) to be oscillatory not only for the case W=OO
7
but also for the case w%<oo. Our theorems can be applied to
7
produce oscillation criteria for the damped equation
(B) x"(t)+ p) ' () + q(t) f(x(9(t)) =0.
1. We begin with the case N % =oo0. In this case the follow-

ing theorem holds.
Theorem 1. Assume there exist two positive functions p(l)
€ C¥0, o0) and ¢(y) € C(0, co) with the following properties:
o) =0, (r@®d®) =<0, ¢u=0,

Ay o 5>0
o FID o for some R

" pg(E)a®) 4, >0
SRagiy e Torany T>0,

where RT(t)=Jt % Then all solutions of (A) are oscillatory.
T 7(s
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Proof. Suppose there exists a nonoscillatory solution x(t) of (A).
Without loss of generality we may assume that x(g(¢))>0 for all suffi-
ciently large t, say, t=7. From (A) (r(®)x'®)) = —a(t) f(x(g(t)) <0,
which implies that »(t)2’(f) is nonincreasing. From the assumption

m—;ﬁ) =oo it follows that 2/(t) =0, i.e., 2(t) is nondecreasing for t=>T.
In fact, if 2/(¢*) <0 for some t* =T, then r(t)x'(t) < r(t*)x’'(¢*) for t =t*,
and an integration of the last inequality divided by #(¢) gives

w—a) s || 22

which yields a contradiction in the limit as ¢—oco. Let ¢, be such that
g@®)>T for t=t,. It is easy to verify that there is a constant 4A>1
such that

(1) 2(gAN=AR.(9(t))  for t=t,.

Multiplying (A) by o(g(®)/f(@(g(t)$(R(9(t))) and integrating on

[t,, t] we obtain
olg@)r@®)x’'(t) + ¢ p(g()) ()’ (S)Lf (@ (g(s))g(Rr(g(s)) ds
J@(@@Ng(Rr(9(®) Ju [f @(g(eMP(R(g(N]
"t ()2 ()e'(9)g(S) 4o (" p9()als)
0 f((9())g(Rr(9(s))) n g(Rr(9(s)
where C is a constant.

Since z, f,9,¢, B are nondecreasing, the integral on the left
hand side of (2) is nonnegative. Using the inequalities r(f)a’(t)
<r(g@)x'(g@), (r@®)p’'®))<0 and (1), and applying the well known
Bonnet’s theorem, the first integral on the right hand side of (2) is
estimated as follows:

| TOTOIUDNTS) gy [ TGDT GG g,
@O RIS e F@gNER9(s))
<r(g(t)d (g(t, ¢ 2 (g(s)g’(s)
=rlge)e (6l Jz:f(w(g(s)»qs(RT(g(s») ¥

Aot (a0 2(g(t0)/ A dy
= V)0 Y7 ) cacensa J@Wd(y) '

Thus the first integral on the right side of (2) remains bounded above
as t—oo. Letting t—oo in (2) we conclude that
lim _ POOrOE®
- f(2(9(E)))P(Rr(9()))
which contradicts the fact that «’'(f)=0 for t=%,. This completes the
proof of the theorem.
Remark. Theorem 1 extends a recent result of the authors [3,
Theorem 1] for the special case of equation (A) with »(t)=1.
Corollary 1.1 (Bykov, Bykova and Sercov [1]). Assume that there
18 2> 0 such that

(2)
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r [R (9] *a(t)dt= oo for any T>O0.

Then all solutions of the equation
(r@®z' ®)) +a®z(g(t)=0
are oscillatory.
Proof. Apply Theorem 1 to the particular case where f(y)=y,
o) =R.(), s(y)=vy".
Corollary 1.2 (Bykov, Bykova and Sercov [1]). Assume that

f " Ro(g@®)a®dt=oo  for any T>O.

Then all solutions of the equation
(@' @) +a@) |2(g@®) | sgn 2(9(£)=0,  a>1,
are oscillatory.
Proof. Apply Theorem 1 to the particular case where f(¥)
=ly|*sgny, a>1, p(O)=R,(1), () =1.
2. The object of this section is to prove an oscillation theorem

for (A) which is particularly useful to the case r%< o
7

Theorem 2. Assume there exists a positive function o(t) € C*0, o)
with the properties:
Jd(®)=0, (r@®)d’ ()Y =0,

J T_dt
a(t)r(t) ’
j " o(Ba(t)dt= co.
Let j 7 ( ) —~2 < oo for some 6>0. Then all solutions of (A) are oscil-
+0

latory.

Proof. This theorem was motivated by Kamenev [2]. Let x(¢)
be a nonoscillatory solution such that x(g(¢)) >0 for t=t,. It follows
that »(¢)«’(t) is nonincreasing for t=t¢, and so 2/(¢) is eventually of con-
stant sign. We multiply (A) by o(t)/f(2(g9(t))) and integrate from
t, to t to obtain

o(®)r®)a’(t) i I‘ a(8)r(8)a' (Lf (@9 4o
J(@(g(®)) &1 [f(x(g(s)T
(92 (8)a’(8) 4o J‘
=C+ [, M atotay =], o@uds

where C is a constant. It is clear that the integral on the left side of
(3) is nonnegative.

Let «/(£)=0. Then, the first integral on the right side of (3) is
nonpositive, and therefore, letting t—oo in (3), we get a contradiction.

Let #/(¢)<0. Then, as in the proof of Theorem 1, we can show
that the first integral on the right side of (8) is bounded above. We

(3)
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can choose t,>t, so that the right hand side of (3) is less than —1, i.e.,
(4) 1+ J‘ a(8)r(8)a’(s)[ f (x(g(s))V ds< o(®)r@)(—2'(t)

[f (x(9(s)N] - f(x(g®))
for t=t,, Multiplying both sides of (4) by
_ [f(g@))Y {1 n J t a(8)r(8)a’ () f(x(g(s))] ds}_lgo
J(@(g(@))) ta L (x(g(sN)]
and integrating from ¢, to ¢, we have
5 1 S(@(g(t))) <log[1 to(s)r(s)x' (s)Lf (x(g(s))Y dsb.
(8) log=rrom = ¢ {1+, LF @@ J
From (4) and (5) we get
J@(gt)) = —a@®r®)a’ (@),

or
ds
a(s)r(s) ’
which gives lim x(f)= — oo, a contradiction. This proves the theorem.

[

o) — a(t) < — F((g(t) j

Corollary 2.1. Consider the equation

(6) (@' (@)Y +a(t) |2(g(t) |* sgn 2(9(¢))=0, 0<a<1.
Assume that

= dt
) S

r S®a(t)dt= oo,
where S(t):f%. Then all solutions of (6) are oscillatory.

Proof. Apply Theorem 2 to the particular case where f(y)
=|yl*sgny, 0<a<l, o(f)= wﬁ.
t ’)"(8)

3. Let us consider the damped equation (B). Assume that p(¢),
q(t) € C(0, 0), q(t)=0 and g(t) satisfies condition (c).

Theorem 3. Suppose that tp(t)<1 and (tpt))Y =0 for sufficiently
large t and let

Ay for some 6>0,
= f(y)

[ othact) exp ( f :m p(s)ds)dt= co.

Then all solutions of (B) are oscillatory.
Proof. Equation (B) can be transformed into an equation of the

form (A) where r(s)=exp (J; p(s)ds) and a(t)=7(t)qt). If we choose

o) =t/r(t) and ¢(y)=1, then the assumptions of the theorem guarantee
that those of Theorem 1 are all satisfied, and the assertion follows
from Theorem 1.
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Theorem 4. Assume that tp(t)=1 and (tp(t)) <0 for sufficiently
large t and let
dy

—Z <o for some >0,
=0 f(y)

J “tat)dt= co.

Then all solutions of (B) are oscillatory.

Proof. Choose a(t)=t/r(t) and apply Theorem 2 to equation (A)
into which equation (B) is transformed.
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