75. On Hodge Structure of Isolated Singularity of Complex Hypersurface

By Isao Naruki
Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kôsaku Yosida, M. J. A., June 11, 1974)

Introduction. The Hodge spectral sequence for an isolated singularity of (complex) analytic space is defined as follows. Note first that, given a complex manifold Z, the bigrading of differential forms of Z together with the operators ∂ and $\bar{\partial}$ defines a double complex. The Hodge structure $\left(E_{r}^{p, q}(Z), d_{r}\right)$ of Z is the spectral sequence of this double complex so chosen that $E_{1}^{p, q}(Z)=H^{q}\left(Z, \Omega_{Z}^{p}\right)$ where Ω_{Z}^{p} denotes the sheaf of holomorphic p-forms on Z. Let now (X, x) denote the situation where x is an isolated singular point of an analytic space X. For sufficiently small neighborhood U of $x,\left(E_{r}^{p, q}(U \backslash x), d_{r}\right)$ are well defined and form a direct system with the restriction maps. Set

$$
E_{r}^{p, q}(X, x)=\underset{\vec{U}}{\lim } E_{r}^{p, q}(U \backslash x) .
$$

The map $d_{r}: E_{r}^{p, q}(X, x) \rightarrow E_{r}^{p+r, q-r+1}(X, x)$ is naturally induced. ($E_{r}^{p, q}(X, x), d_{r}$) thus obtained is the Hodge spectral sequence of the isolated singularity (X, x). If X is n-dimensional, then $E_{r}^{p, n}(X, x)=0$ by Malgrange [3]. By Andreotti-Grauert [1] $E_{1}^{p, q}(X, x)$ are finitedimensional (over C) if $1 \leqq q \leqq n-2$.

The main result is the following
Theorem 1. Let $n \geqq 3$ and suppose (X, x) is a hypersurface singularity, that is, there is a holomorphic function f in a domain Y of $C^{n+1}:\left(z_{0}, \cdots, z_{n}\right)$ such that $X=\{z \in Y ; f(z)=f(x)\}$, and such that $\partial f(z) / \partial z_{i}=0(0 \leqq i \leqq n)$ if and only if $z=x$. Let $E_{r}^{p, q}(X, x)$ be denoted for short by $E_{r}^{p, q}$. Then the following conclusions are valid.
(i) $E_{1}^{p, q}=0$ if $q \neq 0, q \neq n-1, p+q \neq n-1, p+q \neq n$.
(ii) There are canonical isomorphisms:

$$
\begin{aligned}
& E_{1}^{2, n-2} \cong E_{1}^{3, n-3} \cong \cdots \cong E_{1}^{n-1,1} \\
& E_{1}^{1, n-2} \cong E_{1}^{2, n-3} \cong \cdots \cong E_{1}^{n-2,1}
\end{aligned}
$$

(ii) $)^{\prime} \operatorname{dim} E_{1}^{n-q, q-1}=\operatorname{dim} E_{1}^{n-q, q}$ for $2 \leqq q \leqq n-2$
(iii) $E_{2}^{p, q}$ are all finite-dimensional.
(iv) $E_{2}^{p, 0}=0$ for $1 \leqq p \leqq n-2$.
(iv) $E_{2}^{p, n-1}=0$ for $2 \leqq p \leqq n-1$.
(v) If μ is the multiplicity of the hypersurface singularity (X, x) in the sense of Milnor [4], then

$$
\begin{equation*}
\mu=\operatorname{dim} E_{1}^{n-1,1}+\operatorname{dim} E_{2}^{n, 0}-\operatorname{dim} E_{2}^{n-1,0} \tag{*}
\end{equation*}
$$

$$
=\operatorname{dim} E_{1}^{1, n-2}+\operatorname{dim} E_{2}^{0, n-1}-\operatorname{dim} E_{2}^{1, n-1} .
$$

The formula for the monodromy is obtained only in case f is quasi-homogeneous, that is, f can be written in the form

$$
f(z)=\sum a_{0} i_{0}+\cdots+a_{n} i_{n}=m c_{i_{0} \cdots i_{n}} z_{0}^{i_{0}} \cdots z_{n}^{i_{n}}
$$

where $a_{0}, \cdots, a_{n}, m>0$ are all integers. In this case the maps $h_{\varphi}(z)$ $=\left(e^{2 \pi i a_{0 \varphi}} z_{0}, \cdots, e^{2 \pi i a_{n} \varphi} z_{n}\right)$ induce an $\boldsymbol{R} / \boldsymbol{Z}$-action on (X, x). In particular $h_{1 / m}$ induces an endomorphism of $E_{1}^{n-1,1}$. Denote by $\Delta^{\prime}(t)$ the characteristic polynomial of this endomorphism. Then the characteristic polynomial $\Delta(t)$ of the monodromy of (X, x) is given by
$(* *) \quad \Delta(t)=(t-1)^{\nu} \Delta^{\prime}(t)$
where $\nu=\operatorname{dim} E_{2}^{n, 0}-\operatorname{dim} E_{2}^{n-1,0}$.

1. Sketch of the proof. Let $f, Y,(X, x)$ be as in Theorem 1. We denote by Ω^{p} the sheaf holomorphic p-forms on Y. Following Brieskorn [2] we set

$$
\Omega_{f}^{p}=\Omega^{p} / d f \wedge \Omega^{p-1} .
$$

Then Ω_{f} is naturally a complex of sheaves. For an open ball B in C^{n+1} with center at x, we set $B_{*}=B \backslash x$ and set

$$
H_{*}^{q}\left(\Omega_{f}^{p}\right)=\underset{\vec{B}}{\lim } H^{q}\left(B_{*}, \Omega_{f}^{p}\right) .
$$

Consider the exact sequence

$$
0 \longrightarrow \Omega_{f}^{p-1} \xrightarrow{d f} \Omega^{p} \longrightarrow \Omega_{f}^{p} \longrightarrow 0
$$

where the first map is induced by the exterior multiplication of $d f$. Using long exact sequence associated with this, we obtain at first

Lemma 1. $H_{*}^{q}\left(\Omega_{f}^{p}\right)=0$ if $q \neq 0, q \neq n, p+q \neq n$.

$$
H_{*}^{q}\left(\Omega_{f}^{p}\right) \cong H_{*}^{q+1}\left(\Omega_{f}^{p-1}\right) \quad \text { if } 1 \leqq q \leqq n-2 .
$$

Combining this lemma with the Hartogs-Osgood theorem, and using the crucial parts of the long exact sequences, we obtain the isomorphisms
(1)

$$
H^{p}\left(\Omega_{f, x}\right) \cong H^{p}\left(H_{*}^{0}\left(\Omega_{f}^{\cdot}\right)\right) \quad p \leqq n-1
$$

and the exact sequence
(2)

$$
0 \rightarrow H^{\prime n}\left(\Omega_{f, x}\right) \rightarrow H^{n}\left(H_{*}^{0}\left(\Omega_{\dot{f}}^{\cdot}\right)\right) \rightarrow H_{*}^{1}\left(\Omega_{f}^{n-1}\right) \rightarrow 0
$$

where $H^{\prime n}\left(\Omega_{f, x}\right)$ is the notation of [2]. These (1) and (2) together with [2] implies that
(3) $\quad H^{p}\left(H_{*}^{0}\left(\Omega_{f}^{\cdot}\right)\right)=0 \quad 1 \leqq p \leqq n-1$
and that $\operatorname{Ker}(\alpha)$, $\operatorname{Cok}(\alpha)$ is finite-dimensional and
(4) $\quad \mu=\operatorname{dim} \operatorname{Cok}(\alpha)-\operatorname{dim} \operatorname{Ker}(\alpha)$
where $\alpha: H^{n}\left(H_{*}^{0}\left(\Omega_{\dot{f}}\right)\right) \rightarrow H^{n}\left(H_{*}^{0}\left(\Omega_{j}^{*}\right)\right)$ is the map induced by the multiplication of f in Ω_{f}^{\cdot}.

Consider now the exact sequence

$$
0 \longrightarrow \Omega_{f}^{p} \xrightarrow{f} \Omega_{f}^{p} \longrightarrow \Omega_{f}^{p} / f \longrightarrow 0
$$

where Ω_{f}^{p} / f abbreviates $\Omega_{f}^{p} / f \Omega_{f}^{p}$. Using the associated long exact sequences, with Lemma 1 in mind, we can prove (i), (ii) and (ii)'. By the crucial parts of these sequences, we obtain also the following three exact sequences :
(5)

$$
\begin{gathered}
H_{*}^{1}\left(\Omega_{f}^{n-1}\right) \rightarrow H_{*}^{1}\left(\Omega_{f}^{n-1}\right) \rightarrow E_{1}^{n-1,1} \rightarrow 0 \\
0 \rightarrow H^{0}\left(H_{*}^{0}\left(\Omega_{j}^{\dot{*}}\right)\right) \rightarrow H^{0}\left(H_{*}^{0}\left(\Omega_{\dot{\prime}}\right)\right) \rightarrow E_{2}^{0,0} \rightarrow \cdots
\end{gathered}
$$

(6)

$$
\cdots \rightarrow H^{n-1}\left(H_{*}^{0}\left(\Omega_{f}^{\cdot}\right)\right) \rightarrow H^{n-1}\left(H_{*}^{0}\left(\Omega_{\dot{f}}^{\cdot}\right)\right) \rightarrow E_{2}^{n-1,0}
$$

(7)

$$
0 \rightarrow \operatorname{Ker}(\alpha) \rightarrow E_{2}^{n-1,0} \rightarrow K \rightarrow \operatorname{Cok}(\alpha) \rightarrow E_{2}^{n, 0} \rightarrow 0
$$

where $K=\operatorname{Ker}\left(H_{*}^{1}\left(\Omega_{f}^{n-1}\right) \rightarrow H_{*}^{1}\left(\Omega_{f}^{n-1}\right)\right.$). Combining (3) and (6) we prove (iv). Using (4), (5) and (7) we prove (iii) and obtain the formula $\mu=\operatorname{dim} E_{1}^{n-1,1}+\operatorname{dim} E_{2}^{n, 0}-\operatorname{dim} E_{2}^{n-1,0}$.
Now the full formula (*) follows from this by the Poincare duality ; (iv)' follows from (iv) also by the Poincare duality. The proof of formula ($* *$) is almost evident from the course of the proof of $(*)$.

The details will be published elsewhere.

References

[1] Andreotti, A., and Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France, 90, 193-259 (1962).
[2] Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscripta Math., 2, 103-161 (1970).
[3] Malgrange, B.: Faisceaux sur des variétés analytiques réelles. Bull. Soc. Math. France, 85, 231-237 (1957).
[4] Milnor, J.: Singular points of complex hypersurfaces. Ann. of Math. Studies Number 61, Princeton; Princeton Univ. Press (1968).

