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(Comm. by Kinjir6 KUNI, M. Z. A., Sept. 12, 1974)

1. Introduction. Let tO be a bounded domain in R with boundary
t2. Recently in his paper [1] T. Donaldson proved the existenee of
weak solutions (in some 0rliez-Sobolev spaces) of non-linear elliptic
boundary value problems of which are given two examples
(1.1) D,(u.exp (Du))+D(exp fl(Du))--f,0

t,j<n

and
(1.2) D(Du) In (Du)--f

t,j<n

both associated with the boundary condition u
Originally Leray and Lions suggest in [4] an introduction o Orlicz-

Sobolev spaces or those problems as (1.1), (1.2).
In this paper we consider the initial-boundary value problems or

evolution equations of the orm
(1.3) OU +Au=f
with conditions
(1.4)
(1.5)

u(x, 0)=u0(x)

in some 0rlicz-Sobolev spaces where Au are of a growth not equivalent
to any power and are similar to (1.2). Our equations (1.3)furnish a
simple example"

3u_. 3 (I 3u - 3u )ln( 3u I/l)__f, p2.t = x x x x
2. Preliminaries. In this section we give some necessary defini-

tions and lemmas rom 0rlicz spaces which are referred to in [3], [2].
We call a unction an N-unction i it admits of the representation

(.1) ()=

where the function p(t) is uer-eontinuous for t)O, ositive for t>O
and non-decreasing with conditions

p(O) 0, lim (t)=.
M(), a real-valued function on R1, iS an N-function if and only if

M() is a continuous even funetion which is convex, increasing for )0
and satisfies



No. 7] Initial-Boundary Value Problems 463

lim M()--0, lim M()--c.
0

N(V), a real-valued function on R, is said to be the complementary
N-function to M() if it admits of the representation

(.. ,) N(r2) q()d, q()=su

We denote M()<M() if there exis constants ,)0, >0 such tha
() ,() for ),.

M() and M() are said to be equivalent and written M()M()
M()M() and M()M().

We say an N-function M() satisfies the A-condition if there exist
constants 00 and k0 such that

M(2) kM() or 0.
The Orlicz class L(9)=L is the set of unctions u(x) such that

M(u(x))dx

The Orlicz space L(9)=L is the linear hull of L. L is made a
Banach space by the Luxemburg norm

,u,,:in

I M() satisfies the A-condition, then L L andL is separable.
L.L holds if and only if M()<M(). L is reflexive i2 and only
if M() and N() both satisfy the A-condition.

I M(u(x))dx< C (we say, u(x) is "bounded in the mean"), then
J

we have u ]]< C+ 1. I lim_ u-u0] 0 for Un, Uo e L, then

lim f M(u(x)--Uo(X))dx=O

(We eall this convergence "convergence in the mean").
Here and afterwards M()= p(t)dt is the given N-function

which satisfies he A-eondition.
Examples. M()=I In (+ 1) (r)l), M()=II (r>l) are both

N-functions satisfying the A-eondition for all
3. Lemmas and main theorem.
Lemma 3.1.

()=/’’ M(t)dt

is the N-function and satisfies the A-condition. Moreover, the N-
function () complementary to () satisfies the A-condition for all
and admits of the representation

() -(t)gt.

Nor the roof, see
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Now define two functions (t), () on R by

p(t)-  o(t)dt.

Then we have
Lemma 3.. () i N-etio eqiwlet to ()d

the A-condition. Further, let () be the complementary N-function
to () admitting of the representation

()=f’’ (s)ds.

Then () also satisfies the -condition.
Proof. The N-unction M() satisfies the -condition if and only

if there exist constants a> 1 and 0>0 such that, or 0,

([3; Chap. I, 4, p. 24]). Thus ollows that
M()<()<M(a) or 0,

that is, ()(). Hence ()() also holds. Q.E.D.
Lemma .. Let p(t) and q(s) be both continuous. If u(x) e L,

then M(u(x)) e L.
Proof. It is obvious that the inequality

M() ]
holds or 0. Hence we have

p()(M())
By integrating both sides rom 0 to ], we obtain

(M()) () or all $,

i.e.

e(M(u(x))) dx< e(u(x))dx., , Q.E.D.
Next we shall prove Poincar’s inequality or N-unctions.
Lemma .4. Let M() be an N-function. If u is a function in

L with compact support in 9 such that 3u/3x (in the sense of distri-
bution) e L. Then the following inequality holds"

here d i the daeter o D.
Proof. Since L3cL1, by using Nikodym’s heorem, we have

t(, z)= , z)dt a.e.

and

where infzt ’x= x sup xt for x (xt, x) e supp u, respectively.
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By Jensen’s integral inequality ([3; Chp. II, 8, p. 62])

( 1 1 u(x))<M( 1 ’: 1 u Idx)I! tlX--X l X--X :i k,o x
, M dx
X X xl o X

where ko=]3u/3x (note the last term is finite). Hence
1

i.e. u]dko=d3u/3x[. Q.E.D.
Now we define the Orlicz-Sobolev space WL by the set of unc-

tions u such that
Du(distributional derivatives) e L or a with am. Then WL

is a Banach space with respect to the norm
u E Du].

Let WL be the closure of ia WL and let W-L be the dual
space o WL.

Lemma .. WL is separable and reflexive.
Lemma .6. W-L consists of distributions u of the form

u= Dg
where g e L for with am.

For the proofs of Lemma 3.5 and Lemma 3.6 see Lions [5; Chap I].
Main theorem. Let M() be given an N-function satisfying the

ccondition and the functions p(t) in (2.1) and q(s) in (2.2) be continu-
ous. And further let be given Uo(X) e WL and f(x, t) e L(O, T; L).

Then there exists one and only one (weak) solution u(x, t) of the
equation -+ (-- 1)D(M(Du) sgn Du) f

satisfying
u e L=(0, T;
3u/3t + L2(0, T L2)
u(0) =u0.

4. Proof of main theorem. Put
Au-- (-- 1)’D"(M(D"u) sgn D"u).

First we show that A is monotone, hemi-continuous and bounded oper-
ator rom WLoW-L. Then last assertion follows directly rom
HSlder’s inequality ([3; Chap. II, p. 74, p. 80]), Lemma 3.3 and Lemma
3.5. For the first assertion, since M is even and increasing, we have

(M() sgn --M() sgn )($--) 0
or any , e R. Hence A is monotone. Finally, since

M(D"u+Dv])Dw] dx(A(u+ v), w) <
al
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< [ ((]D"u]+]D"v])+(D"w))dx
lal J9

for any u, v and w in WL and any 01, A is hemicontinuous by
Lebesgue’s convergence theorem.

We shall employ the Galerkin’s method. Let {w}l,,... be a com-
plete system of functions in WL. We look for approximate solutions
u(x, t) in the form

u.(t) g.w
j=l

where the unknown functions g. are to be determined by the follow-
ing ordinary differential system
(4.1) (u.(t),w)+ (M(D"u.) sgnD"u.,D"w)=(f(t),w), 1]

with initial condition

where
UO--U in WL strongly as ,c.

Then we obtain the ollowing a priori estimates"
(4.2) u, II(0,r;w)<C
(4.3) u, ](0,r;)< C.
In fact, multiplying (4.1) by g’ and summing up the resulting equationsj

from ]= 1 to, imply

u(t)]] + , (lI(D"u(t))’dx-- (f(t), u:(t))

1 1

Integrating in t both sides we have

Thus a priori estimates (4.2), (4.3) are obtained in virtue of Lemmas 3.2
and 3.4.

Hence there exist a unction u and a subsequence {u,} of {u} such
that

u,---u in L(0, T; WL,) weakly star,
u’,u’ in L(0, T; L) weakly,
u,(T)u(T) in WL, weakly

and
Au,z in L(0, T; W-L) weakly star.

Hemi-continuity and monotonicity of A yield z--Au ([6; Chap. II,
p. 160]) which implies the function u is a desired solution.

The uniqueness part follows from the monotonycity of A, as usual.
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