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104. Localization of G-spaces

By Yoshiharu MATAGA
Takamatsu Technical College

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1974)

1. Introduction. In [1] D. H. Gottlieb has introduced the notion
of G-spaces. The purpose of this note is to apply the localization theory
to G-spaces. A space X is called a G-space if, when we fix x, ¢ X arbi-
trarily as the base point, for any integer m and for any element
a€m,(X,x,) there exists a map F: (X x8™, (2, s,))—(X, x,) such that
F xxis0 ¢ X—X is the identity map and F,,xsn: (S™, 8)—(X, ,) repre-
sents o, where s, ¢ S™ is the base point.

In [4] it has been proved that for any 1-connected CW-complex X
of finite type and any set P of primes there exist the localized space
X, which is a 1-connected, countable CW-complex, and the localization
map jy: X—Xp(i.e. the induced map (jx), localizes the homology group
with integer coefficient and the homotopy groups with respect to P),
and moreover that X, is determined up to homotopy by the homotopy
type of X and by the set P.

When P consists of one element p, we denotes X=X ,,.

The main theorem of this note is the next one.

Theorem 1. Let X be a 1l-connected, finite CW-complex. Then
X is a G-space tf and only if X ,, is a G-space for all primes p.

2. Proof of Theorem 1. An m-th evaluation subgroup, denoted
by G..(X, x,), of the homotopy group =, (X, x,) is the set of all wer, (X, x,)
for which there exist a map F: (X xXS™, (z,, 8)))— (X, x,) and a repre-
sentative f:(S™,s)—(X,x,) of a such that F |y, ,=identity and
F|ogxsn=f. Infact G,(X, x,) is a subgroup of r,(X, z,) [1; § 1]. Note
that X is a G-space if and only if G,(X, 2)=7,(X, 2, for arbitrary
point x, ¢ X and for all m.

Let Cp be a Serre class of finite abelian groups whose orders are
prime to p for all p € P, where P is a set of primes.

According to H. B. Haslam [2] we call a 1-connected space X a
mod P G-space if 7,(X, 2)/G,(X, x,) € Cp for arbitrary point x, ¢ X and
for all m.

Lemma 2 [1; 1-3]. (1) Let xy, 2, ¢ X andlet o: I-X be a path in
X such that ¢(0)=2z, and c¢(1)=2x,. Then the induced isomorphism
0y (X, 2) =Zn,(X, 7,) gives the isomorphism G, (X, x) =G, (X, x,).

(2) Let xye X and y, e Y and let f: (X, x2)—(Y,y,) be a homotopy
equivalence. Suppose x, is closed in X and y, closed in Y and (X, x,)
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and (Y, ¥y, have the homotopy extension property. Then the induced
isomorphism f,: n,(X, x) =x,(Y,y,) gives the isomorphism G, (X, x,)
=Gn(Y, Y-

Theorem 3. Let X be a 1-connected, finite CW-complex and P be

a set of primes. Then X is a mod P G-space if and only if Xpis o G-
space.

We will show Theorem 1, assuming Theorem 3.

Proof of Theorem 1. Suppose X is a G-space. Then clearly X is
a mod p G-space for all primes p. It follows from Theorem 3 that X ,,
is a G-space for all primes p.

Conversely suppose X ,, is a G-space for all primes p. Then from
Theorem 3 it follows that X is a mod p G-space for all primes p, that
is 7,(X, 2)/Gn(X, ) € C, for all primes p, where z, is the base point
chosen arbitrarily. Therefore G,(X, %)=, (X,2,). Since m is arbi-
trary, this concludes that X is a G-space. Q.E.D.

To prove Theorem 3 some lemmas will be needed. Let 9, be a
category of 1l-connected, finite CW-complexes. In [4] the localization
of X e F(C, at Pis constructed as the union of a P-sequence {X, 9}s0,1,...
of X, where X,=X, X, e J(, (¢>0)and g,: X,_,—X, is a P-equivalence,
that is g, induces isomorphisms g,.: H (X, ,; Z,)=H (X,; Z,) for all
peP. As for the definition of a P-sequence and its existence for any
X e 9C, and any P we refer to [4].

Lemma 4. Let X e FC,. Then (fx),: an(X, 2)—wn(Xp, T,) carries
G, (X, z,) into G,(Xp, &), where Ty=7]x(x,).

Proof. Let {X,,9;} be a P-sequence of X. We may assume that
g;: X, ,—X, is an inclusion of a subcomplex. So we may also assume
that g, xd: X,_, xS™—X, X S™is an inclusion of a subcomplex. Choose
the base points z, € X, so that z,=g,(x,_) (1=1,2, .-.).

Let F': (X xS™, (,, 8,))—(X, ;) be a map such that F |5, ,, =identity
and F' |, xs» represents a € z,(X,x,). By the similar method to the
proof of [4; 1.7] we can find a sequence {F},_,,.. of maps, where
F,: (X, xX8™, (%, $9))—(X,y ®,y) for some p(¢) >1, such that Fy=F and
the following diagram is homotopy commutative

X, x8™ > X, X S™
i1 X g:Xid ¢

lth lF'z

pi-1) > X,

Ge@y°r* °Gpi-1+1

Then it is clear that there exists a map F: |, (X;XS™)=XpxS™
-z, X;=X, such that Fo(jyxid) is homotopic to jzoF. Since
F |gv sy =1dentity, it follows from [4; 1.7] that F |; ., is homotopic to
the identity map of Xp.

Since (XpXS™, XpX{s)}U{x}xS™) has the homotopy extension
property, there exists a map G: (XpXS™, (%, s)))—(Xp, Z,) homotopic
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to F such that G |r,,,=1identity. Then clearly G|,,xs= represents
(x)x(@). Therefore (jx), () € Gu(X, Ty). Q.E.D.

For spaces X and Y, X~Y means that X is homotopy equivalent
to Y.

Lemma 5. Let XeJ(C,. If X is a mod P G-space, there exists o
P-sequence {X;, ¢;} of X such that X;~X for all i.

Proof. Since n,(X,x,)/G.(X, 2, is a finite abelian group for all
m, it follows from {2; Theorem 1] that X is a mod 0 H-space, that is
there exists a multiplication p: X X X—X such that x-4,: X—X (j=1,2)
are rational equivalences, where j,: X—X X X is the canonical inclusion
into the j-th coordinate. By [3; 1.4] a mod 0 H-space is P-universal.
By [4; 5.3] a P-universal space has a required P-sequence. Q.E.D.

As for a Moore-Postnikov factorization {p,, E,, f,} of a map f: X
— Y we refer to [5; Chap. 8, Sec. 3], where p,: E,—FE,_, (n>1) and
fn: X—E, ®>0). Itis well known that if X and Y are CW-complexes,
for all n E, may satisfy the conditions (i) £, has the homotopy type of
a CW-complex, (ii) e,, the base point of ¥, is closed in ¥, (iii) (¥,, e,,)
has the homotopy extension property.

Lemma 6. Let Xe%(C,. Let {p,,E,, f.} be a Moore-Postnikov
factorization of f: X—Y. If z,(E" €,)]Gn(E,,e,) e Cpforall m and n,
then X is a mod P G-space.

Proof. The proof is similar to that of [2; Proposition 2]. Q.E.D.

Suppose we are given maps F: (X X S™, (2, 8)) — (X, x,) with
F |y sy =1identity and f: X—K(z,n+1), where = is an abelian group
and n>1. Let pe H*(X; n) be the image of the characteristic class
ce H** Y (z,n+1; ) by f*: H***(x,n+1; x)—H"**(X ; ). By the Kiinneth
theorem H*(X X S™; n)=H*(X; n)QH*(S™; Z). So we may represent
F*()=p®@1+vQ®2 € H**'(X X S™; n), where 2¢€ H™(S™; Z) is the funda-
mentalclass and v e H"*'"™(X ; ). Since v is determined by x# and the
homotopy class of F', we denote it by uxF'.

Lemma 7 [1; 6-3]. Let p: E—X be a principal fibration induced
by f: X—K(zx,n+1) (n>1), where X has the homotopy type of a 1-con-
nected CW-complex, x,, the base point of X, closed in X and (X, x,) has
the homotopy extension property. Then there exists a map G: (E xS™,
(ey, 8)—(E, €)) such that G |g«,;=1dentity and the diagram

ExSm~——~G—-—+E’
pxidl pl
XxSm—F—>X

is homotopy commutative if and only if pF=0.

Lemma 8. Let XeSF(C,. Let{p,, E,, ().} be a Moore-Postnikov
factorization of the map jy: X—Xp. If n,(E,,e,)|Gn(E,,e,) cCp for
all m, then w,(E, .15 €4, Gu(E i1y €0, € Cp for all m.
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Proof. Note that for each ¢ 7,(Xp, X) consists only of elements
whose orders are finite and prime to all pe P, and that for i<n
r,(¥,,e,) and H,(F,; Z) are finitely generated. From now on = stands
for n,,,(Xp, X). S0 p,,.: E,,,—FE, is a principal fibration induced by
some map f: E,—»K(x,n+1). Let F:(E,x8™, (e, s)—(F,,e,) be a
map such that F' |5, =identity.

(i) Suppose 1<m<n+1 and m=+#n. Since n4+1—m<n,
H"*'-»(F,; n) is a torsion group whose elements have orders prime to
p for all pe P. Let q be the order of pF', where (¢,p)=1 for all p e P.
Let g: (S™, s))—(S™, s,) bea map of degree q. Then it is clear that
for the map Fo(idx g): E,XS™—E, X S™—F, there holds u(F o (id X 9))
=0. By Lemma 7 there exists a map G: E, ., XS™—E,,, such that
G |z, ..xsq =1dentity and the diagram

En+1><Sm G ’E'n+l
l?nﬂXid lpnu
m m

is homotopy commutative. Since (9,1 : TnE s €ni)—an(Ey, €,) i8
a monomorphism, the above fact implies that if (p,.,).(8) € G.(E.,,e,)
for fe np(E .1, €4.1), there exists an integer g with (¢, p)=1forallpe P
such that g8e Gn(E,,1, €,,). Thus 0,03 (Gu(E,, €,))Gn(E .y, €nsr)
N Pn)5 (G €,)) € Cp. From the assumption z,,(E,, €,)/ Gn(E.,, €,)
€ Cp, it follows that z,(E.,, 1, €,.)/®r. D5 (Gn(E,, €,)) € Cp. Therefore
n'm(EnH’ en+1)/Gm(En+1’ en+1) € CP~

(ii) Suppose m=mn. From the homotopy exact sequence of the

fibration Pnyrt En+1_>En it follows that (pnﬂ)* : ﬂn(EnH’ en+1)”")7’»'n(Em en)
is an epimorphism and that Ker (p,.,), is a torsion group whose
elements have orders prime to all p ¢ P. Furthermore since 7,(F, .1, €,,.)
is finitely generated, Ker (p,,,), is a finite group. Let ¢’ be the order
of Ker (p,.),. Since E, is 1-connected, H**'"™(E,; n)=H'(¥,; =)=0.
So uF'=0. It follows from Lemma 7 that there exists a map G: (¥,,,
X Sm’ (en+1’ 80))_’(En+17 en+1) such tha't G lEn+1><(so) =identity and Pry1o G
is homotopic to F o (p,,,Xid). The above fact implies that if (p,.,).()
€ G,(E,,e,) for fen,(E,,,,e,,,), there exists y ¢ Ker (p,,,), such that
B+reG(Eriys ).  Thus ¢B+7)=apeGu(E,,s 4,0, that is
@003 (G (B €2))] G (Bryrs €01 N (D)3 (Gr (B, €4) € Cp. Since
DniDy: 7B oyyy, €00 — 1, (B, €,) is an epimorphism, we have =,(E,.,,
41| D015 (Gu(E s €)) =7,(E,, €,)G (B, ;) € Cp.  Therefore n,(E,,,,
ni1)| Gu(Erni1y €ny1) € Cp.

(iii) Supposem>n+2. Sincen+1—m<0, uF'=0¢ H**'"™(E,; ).
Noting that 0,,),: 7n(Esiys €ni)—rn(E,, €,) is an isomorphism, we
can prove similarly as (i) and (ii) that z,,(E,,1, €,.1)/Gu(Epi1s €041 163 CB.

Q.E.D.
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Proof of Theorem 3. First assume that X is a mod P G-space.
Let {X,, 9.} be a P-sequence of X, where we may assume X,~X for all
1 by Lemma 5. Choose an arbitrary integer m(>1) and fix it. We
will prove that G, (Xp, ) =r,(Xp, T).

Let aen,(Xp,T,) be an arbitrary element. Since Xp={J7,X,,
there exist an integer & and «;, € 7, (X, %) =r,(X, 2,) such that (J;) (o)
=a, where j,: X,—Xp is the obvious inclusion. Let ¢ be the order of
(X, 2) |G (X, 2,), where (¢,p)=1 for all pe P. From the property
[4; 1.1/, 2)] of P-sequences, it follows that there exist an integer N(> k)
and By € Xy, Ty) =7,(X, @,) such that (gyo - -« o gu.)y(ar) =ay=0qpy.
Therefore ay € G,,(Xy, €y). Let Y=y X,, then Y may be considered
as the localization of X,y at P. By Lemma 4 we have (jy,).(ay)
e G,(Y,vy,), where jy,: Xy—Y isthe localization map and y,=jX (zy).
It is clear that jy: Xy—X, factors through Y, that is, there exists a
homotopy equivalence #: Y—X, such that jy is homotopic to ko jy,.
Thus a= (Jy)ulay) =hyo(x)x(@y). From Lemma 2 it follows
a € G,(Xp, T,), since (Jx,)(ax) € G,(Y,¥y,) and h is a homotopy equiva-
lence. Therefore G, (Xp, ) =7r,(Xp, Ty).

Conversely assume that X, is a G-space. Let {p,,E,, (Jx).} be a
a Moore-Postnikov factorization of jy: X—X,. Since a G-space is a
mod P G-space, E,=X, is a mod P G-space. So using Lemma 8 we can
prove by induction on » that =, (¥,, e,)/Gn.(E,, e,) € Cp for all m and n.
From Lemma 6 it follows that X is a mod P G-space. Q.E.D.
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