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Let X be a complex mnifold and let ) denote a monoidal trans-
form o X o which the center is a point. The olowing proposition
is well-known"

If X admits a Kihler metric, then also admits a Kihler metric.
In this note we shall prove an extension theorem or Khler

metrics o which the converse o the above proposition is a corollary.
Moreover we shall show a similar extension theorem or a certain type
o branched coverings.

1. Formulation of the results. In this section we denote by X
a complex manifold and let D={z e Clz<r}.

Proposition A. Assume that D--O has a Kihler form o. Then
D admits a Kihler form co such that to-do on D--D#/.

Corollary. Let P denote a point on X. If X--P is a Kihler
manifold, then X is also a Kihler manifold.

Let D=Dr--D=D be the m-old branched covering defined by
the mapping z-z, and let /" denote the covering transformation
group o D with respect to D. Moreover let p" X-D be a surjective
proper smooth holomorphic mapping, X=XxD, and denote by z the
induced covering map" X-+X. The group F acts on X in an obvious
manner.

Proposition B. If X has a F-invariant Kihler metric , then X
admits a Kihler metric o such that =z*w on z-’p (D--D(/).

Corollary. Let and be compact Riemann surfaces, X a com-
pact complex manifold of dimension n, and let 19" X-+z] be a fibre
manifold. Moreover let " ]--.z] be a finite Galois covering. Let f(
denote the normalization of the fibre product XX. Assume that the
induced covering X-X has its branch locus on regular fibres of p" X
-+z]. Then X is a Kihler manifold if and only if X is a Kihler mani-
fold.

2. Proof of Proposition A. By _q) and we denote, respec-
tively, the sheaves o differentiable unctions and differentiable d-closed
(1, 1)-orms. We have a natural exact sequence o sheaves"

’--i-aa
0 >(C)+0 >..q) > >0.

Lemma 1. Let o be a d-closed (1, 1)-form on W=D--O, n2.
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Then there exists a differentiable function u on W such that

Proof. In view o the exact sequence
H(W,)H(W,)H(W, _) + (),

the assertion is reduced to the equality H(W, (C) + ()--0, which follows
immediately rom Scheja’s theorem (cf. [5] Satz 1).

Lemma 2 (Shiffman). Let
(o-- /-L-3w.(z)dz"/d

be a real d-closed (1, 1)-form on the domain W--D--O. If w>=O and
w,.>=O on W, then there exists a real differentiable function u(z) on W
such that

For a proof, see [6] p. 333.
From Lemma 1 and Lemma 2, we obtain the following
Lemma 3. Let o be a Kihler form on W=D--O (n>2). Then

there exists a strictly plurisubharmonic function u on W such that

Lemma 4 (Grauert-Remmert). Let V be a closed analytic sub-
variety of a domain U. A plurisubharmonic function u on U--V can
be extended to a plurisubharmonic function defined on U if either the
codimension of V is greater than I or u is bounded from above.

For a proof, see [1] Satz 3 and 4.
Proof of Proposition A. I n-- 1, any hermitian metric is Kihler

and the assertion is trivial. Assume that n 1. Then by means of
Lemmas 3 and 4, we find a plurisubharmonic function u(z) on D such
that ----35u on D--0. Let 2(z) be a non-negative differentiable
unction defined on C such that

( 2(z) depends only
(ii) supp 2 Dr/,

(iii) [ 2(z)dv(z)--1, where dr(z) denotes the volume orm,
JCn

(iv) 2 is a positive constant on D/.
Then, or a small positive number

(z) ...[c,,u(z (z)),()dv()

is a differentiable unction on D. We infer readily that converges
uniformly to u on D--D/ for e $ 0 in the C-sense, and that -----u on
DC--D5/. Therefore, or sufficiently small e, is strictly plurisub-
harmonic on D--D/. On the other hand, since (z) is constant for
z e D/, it ollows rom a well-known theorem that is strictly pluri-
subharmonic on D,/ (HSrmander [2] p. 45). Hence 5--4-]3 is a
Khler metric which satisfies the conditions.

3. Proof of Proposition B. Shrinking D if necessary, we can
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choose open coverings"
X- U, U-D D-,
2= u , 5"-’bxD’-.

Then there exists a strictly plurisubharmonic function on U,
1 .such that w=/-lOSg. Replacing g by -rer , where IFI denotes

the order of F, we may assume that is F-invariant. Therefore
can be regarded as a continuous pl.urisubharmonic function on U,.
wu--,--; is continuous on U, U and is harmonic on U, NU
--U N U; N p-(0). Hence wu is a harmonic function on U, U. Let
x, (?))and (x, y) be a global coordinate of D, local coordinates of F
=p-l(0) and local coordinates of X. X is diffeomorphic to D F. Let
a" D F--,X be a diffeomorphism. Then y, is a differentiable function
in x and ?),. Moreover, we can choose a such that y, depends holo-
morphically on x (see Kuranishi [3]). By 2(x, ?)) and @(x, ?)) we
denote, respectively, , and w, considered as functions in (x, ?)3. Now
we define a differentiab!e function

u(x, y,)- [ 4(x--s2(x), ?))2() dv().

Then, for small s>0 (O2u/Oy, Sy,) is positive definite, because is dif-
ferentiable in y. On the other hand, since w, is harmonic in (x, y,)
and y, is holomorphic in x, zV, is harmonic in x. Hence

u(x, y)--us(x, y)

fcvs(x--2(x), ?)2()dv()
v(x,)

=ws(x, y).
Thus {/--A-8u} defines a global d-closed (1, 1)-orm on X. By adding
a suitable d-closed (1, 1)-orm on D, we can construct a Khler metric
w on X, which satisfies our requirements.

4. Examples. Let X be a monoidal transformation whose
center is a point. Then we have the ollowing

Proposition C. X is Kghler (or projective) if and only if f( is
Kihler (or projective).

In a orthcoming note [4], we shall prove the ollowing theorem
with the aid o the above Propositions A and B"

Theorem. An elliptic surface admits a Kihler metric if and only

if its first Betti numbers is even.

References

1 H. Grauert und R. Remmert- Plurisubharmonische Funktionen in kom-
plexen Riiumen. Math. Z., 65, 175-194 (1956).



410 Y. MIYAOKA [Vol. 50,

[21

[]

[4]
[5]

[6]

L. Hbrmander: An Introduction to Complex Analysis in Several Variables.
Van Nostrand, Princeton (1966).

M. Kuranishi: New Proof for the Existence of Locally Complete Families
of Complex Structures. Proceedings of the Conference on Complex Analy-
sis in Minneapolis (1964). Springer, Berlin (1965).

Y. Miyaoka: Kiihler metrics on elliptic surfaces (to appear).
G. Scheja" Riemannsche Hebbarkeitsiitze fiir Cohomologieklassen. Math.
Ann., 144, 345-360 (1961).

B. Shiffman: Extension of positive line bundles and meromorphic maps.
Inv. Math., 1, 332-347 (1972).


