91. Extension Theorems for Kähler Metrics

Ву Yoichi МІҰАОКА

Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1974)

Let X be a complex manifold and let \hat{X} denote a monoidal transform of X of which the center is a point. The following proposition is well-known:

If X admits a Kähler metric, then \hat{X} also admits a Kähler metric.

In this note we shall prove an extension theorem for Kähler metrics of which the converse of the above proposition is a corollary. Moreover we shall show a similar extension theorem for a certain type of branched coverings.

1. Formulation of the results. In this section we denote by X a complex manifold and let $D_r^n = \{z \in C^n | z \le r\}$.

Proposition A. Assume that $D_r^n = 0$ has a Kähler form ω . Then D_r^n admits a Kähler form $\tilde{\omega}$ such that $\tilde{\omega} = \omega$ on $D_r^n - D_{2r/3}^n$.

Corollary. Let P denote a point on X. If X-P is a Kähler manifold, then X is also a Kähler manifold.

Let $\tilde{D}=D_r^1 \rightarrow D=D_{r^m}^1$ be the *m*-fold branched covering defined by the mapping $z \rightarrow z^m$, and let Γ denote the covering transformation group of \tilde{D} with respect to D. Moreover let $p: X \rightarrow D$ be a surjective proper smooth holomorphic mapping, $\tilde{X}=X \times_D \tilde{D}$, and denote by π the induced covering map: $\tilde{X} \rightarrow X$. The group Γ acts on \tilde{X} in an obvious manner.

Proposition B. If \tilde{X} has a Γ -invariant Kähler metric $\tilde{\omega}$, then X admits a Kähler metric ω such that $\tilde{\omega} = \pi^* \omega$ on $\pi^{-1} p^{-1} (D - D^1_{(2r/3)m})$.

Corollary. Let Δ and $\tilde{\Delta}$ be compact Riemann surfaces, X a compact complex manifold of dimension n, and let $p: X \to \Delta$ be a fibre manifold. Moreover let $\pi: \tilde{\Delta} \to \Delta$ be a finite Galois covering. Let \tilde{X} denote the normalization of the fibre product $X \times_{4} \tilde{\Delta}$. Assume that the induced covering $\tilde{X} \to X$ has its branch locus on regular fibres of $p: X \to \Delta$. Then X is a Kähler manifold if and only if \tilde{X} is a Kähler manifold.

2. Proof of Proposition A. By \mathcal{D} and \mathcal{F} we denote, respectively, the sheaves of differentiable functions and differentiable *d*-closed (1, 1)-forms. We have a natural exact sequence of sheaves:

$$0 \longrightarrow \mathcal{O} + \overline{\mathcal{O}} \longrightarrow \mathcal{D} \xrightarrow{\sqrt{-1} \partial \overline{\partial}} \mathcal{F} \longrightarrow 0.$$

Lemma 1. Let ω be a d-closed (1, 1)-form on $W=D_r^n-0$, n>2.

Υ. ΜΙΥΑΟΚΑ

Then there exists a differentiable function u on W such that

 $\omega = \sqrt{-1}\partial \bar{\partial} u.$

 $H^0(W, \mathcal{G}) \rightarrow H^0(W, \mathcal{F}) \rightarrow H^1(W, \mathcal{O} + \overline{\mathcal{O}}),$

the assertion is reduced to the equality $H^1(W, \mathcal{O} + \overline{\mathcal{O}}) = 0$, which follows immediately from Scheja's theorem (cf. [5] Satz 1).

Lemma 2 (Shiffman). Let

 $\omega = \sqrt{-1} \partial \bar{\partial} w_{\alpha\beta}(z) dz^{\alpha} \wedge d\bar{z}^{\beta}$

be a real d-closed (1,1)-form on the domain $W=D_1^2-0$. If $w_{11}\geq 0$ and $w_{22}\geq 0$ on W, then there exists a real differentiable function u(z) on W such that

$$\omega = \sqrt{-1}\partial \bar{\partial} u.$$

For a proof, see [6] p. 333.

From Lemma 1 and Lemma 2, we obtain the following

Lemma 3. Let ω be a Kähler form on $W = D_r^n - 0$ $(n \ge 2)$. Then there exists a strictly plurisubharmonic function u on W such that

$$\omega = \sqrt{-1}\partial \partial u.$$

Lemma 4 (Grauert-Remmert). Let V be a closed analytic subvariety of a domain U. A plurisubharmonic function u on U-V can be extended to a plurisubharmonic function defined on U if either the codimension of V is greater than 1 or u is bounded from above.

For a proof, see [1] Satz 3 and 4.

Proof of Proposition A. If n=1, any hermitian metric is Kähler and the assertion is trivial. Assume that n>1. Then by means of Lemmas 3 and 4, we find a plurisubharmonic function u(z) on D_r^n such that $\omega = \sqrt{-1}\partial \bar{\partial} u$ on $D_r^n - 0$. Let $\lambda(z)$ be a non-negative differentiable function defined on C^n such that

- (i) $\lambda(z)$ depends only on |z|,
- (ii) supp $\lambda \subset D_{2r/3}^n$,
- (iii) $\int_{C^n} \lambda(z) dv(z) = 1$, where dv(z) denotes the volume form,
- (iv) λ is a positive constant on $D_{r/3}^n$.

Then, for a small positive number ε ,

$$\tilde{u}(z) = \int_{C^n} u(z - \varepsilon \lambda(z)\zeta) \lambda(\zeta) dv(\zeta)$$

is a differentiable function on D_r^n . We infer readily that \tilde{u} converges uniformly to u on $D_r^n - D_{r/3}^n$ for $\varepsilon \downarrow 0$ in the C^2 -sense, and that $\tilde{u} = u$ on $D_r^n - D_{2r/3}^n$. Therefore, for sufficiently small ε , \tilde{u} is strictly plurisubharmonic on $D_r - D_{r/3}$. On the other hand, since $\lambda(z)$ is constant for $z \in D_{r/3}$, it follows from a well-known theorem that \tilde{u} is strictly plurisubharmonic on $D_{r/3}$ (Hörmander [2] p. 45). Hence $\tilde{\omega} = \sqrt{-1}\partial \bar{\partial} \tilde{u}$ is a Kähler metric which satisfies the conditions.

3. Proof of Proposition B. Shrinking D if necessary, we can

Extension Theorems for Kähler Metrics

choose open coverings:

 $egin{array}{lll} X=\cup \ U_i, & U_i\!\cong\!D\! imes\!D_{\delta}^{n-1}, \ \widetilde{X}=\cup \ \widetilde{U}_i, & \widetilde{U}_i\!\cong\!\widetilde{D}\! imes\!D_{\delta}^{n-1}. \end{array}$

Then there exists a strictly plurisubharmonic function \tilde{u}_i on \tilde{U}_i , such that $\omega = \sqrt{-1}\partial\bar{\partial}\tilde{u}_i$. Replacing \tilde{u}_i by $\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \gamma^* \tilde{u}_i$, where $|\Gamma|$ denotes the order of Γ , we may assume that \tilde{u}_i is Γ -invariant. Therefore \tilde{u}_i can be regarded as a continuous plurisubharmonic function on U_i . $w_{ij} = \tilde{u}_i - \tilde{u}_j$ is continuous on $U_i \cap U_j$ and is harmonic on $U_i \cap U_j$ $-U_i \cap U_j \cap p^{-1}(0)$. Hence w_{ij} is a harmonic function on $U_i \cap U_j$. Let $x, (\hat{y}_i)$ and (x, y_i) be a global coordinate of D, local coordinates of F $= p^{-1}(0)$ and local coordinates of X. X is diffeomorphic to $D \times F$. Let $\sigma : D \times F \to X$ be a diffeomorphism. Then y_i is a differentiable function in x and \hat{y}_i . Moreover, we can choose σ such that y_i depends holomorphically on x (see Kuranishi [3]). By $\hat{u}_i(x, \hat{y}_i)$ and $\hat{w}_{ij}(x, \hat{y}_i)$ we denote, respectively, \tilde{u}_i and w_{ij} considered as functions in (x, \hat{y}_i) . Now we define a differentiable function

$$u_i(x, y_i) = \int_C \hat{u}_i(x - \varepsilon \lambda(x)\xi, \hat{y}_i) \lambda(\xi) dv(\xi).$$

Then, for small $\varepsilon > 0$, $(\partial^2 u_i / \partial y_i^* \partial \overline{y}_i^{\beta})$ is positive definite, because \tilde{u}_i is differentiable in y_i . On the other hand, since w_{ij} is harmonic in (x, y_i) and y_i is holomorphic in x, \hat{w}_{ij} is harmonic in x. Hence

$$u_i(x, y_i) - u_j(x, y_i)$$

$$= \int_C \hat{w}_{ij}(x - \epsilon \lambda(x)\xi, \hat{y}_i)\lambda(\xi)dv(\xi)$$

$$= \hat{w}_{ij}(x, \hat{y}_i)$$

$$= w_{ij}(x, y_i).$$

Thus $\{\sqrt{-1}\partial \bar{\partial}u_i\}$ defines a global *d*-closed (1, 1)-form on *X*. By adding a suitable *d*-closed (1, 1)-form on *D*, we can construct a Kähler metric ω on *X*, which satisfies our requirements.

4. Examples. Let $\hat{X} \rightarrow X$ be a monoidal transformation whose center is a point. Then we have the following

Proposition C. X is Kähler (or projective) if and only if \hat{X} is Kähler (or projective).

In a forthcoming note [4], we shall prove the following theorem with the aid of the above Propositions A and B:

Theorem. An elliptic surface admits a Kähler metric if and only if its first Betti numbers is even.

References

 H. Grauert und R. Remmert: Plurisubharmonische Funktionen in komplexen Räumen. Math. Z., 65, 175-194 (1956).

No. 7]

- [2] L. Hörmander: An Introduction to Complex Analysis in Several Variables. Van Nostrand, Princeton (1966).
- [3] M. Kuranishi: New Proof for the Existence of Locally Complete Families of Complex Structures. Proceedings of the Conference on Complex Analysis in Minneapolis (1964). Springer, Berlin (1965).
- [4] Y. Miyaoka: Kähler metrics on elliptic surfaces (to appear).
- [5] G. Scheja: Riemannsche Hebbarkeitsätze für Cohomologieklassen. Math. Ann., 144, 345-360 (1961).
- [6] B. Shiffman: Extension of positive line bundles and meromorphic maps. Inv. Math., 15, 332-347 (1972).