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1. As the case of simple rings, it is proved by Nakamura and
Takeda ([6]-[8] and [9]) that a Galois theory holds true for finite factors
under some conditions.

Throughout this paper, denote by a separable Hilbert space, by
a von Neumann algebra acting standardly on , by G a countable

discrete group of outer ,-automorphisms of and by . the fixed
algebra of /under G, that is,

.={A ;g(A)--A for all g e G}.
Let be a II-factor and G an outer automorphism group of .

Then , is called a Galois extension of with the Galois group G if .
satisfies the condition"

(1) The commutant ’ of . is a IIl-factor.
The fundamental theorem ([7, Theorem 2]) of the Galois theory

for finite factors is the ollowing"
Theorem A. If A is a Galois extension of _q with the Galois

group G, then the lattices of all subgroups of G and of all intermediate
subfactors to are dually isomorphic by the usual Galois cor-
respondence.

Furthermore the condition (1) is equivalent to the following con-
dition"

(2) G is finite
([7, Theorem 3]).

The Galois theory for general von Neumaaa algebras is discussed
by Haga and Takeda ([4]) or Henle ([5]).

In this paper, we shall show the following theorem as a comment
of the Galois theory for II-factors.

Theorem 1. Assume that j be a II-factor and G a finite group.
Then the crossed product G(R) of by G is isomorphic to the tensor
product (R).(l(G)) of

_
and the algebra of all bounded linear

operators on the Hilbert space l(G).
Recently, M. Choda in [1] introduced a notion of shift for auto-

morphism groups. Relating to it, we shall characterize the shift for
finite groups of automorphisms.

2. Now, we shall relate briefly as to the crossed product accord-
ing to Haga and Takeda [4].
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Let G(R) be the Hilbert space of all ormal sum ,qee g(R)q where
the q are elements of and

Then G(R) is the tensor product l(G)@. Define an operator
(g e G, A e ) on G@ by

(gA)(h)- hg-h(A),.

Then direct computations show that
(g@A)(h@B) gh@h-(A)B,

(g@A)* =g-l@g(A*)
and

(g@I)(e@A)(g@I)* e@g(A)
where e is the unit o G. The crossed product G@ o by G is the
von Neumann algebra generated by {g@A;g e G and A e }. Then
we shall identify e@ with because e@={e@A;A e} is
isomorphic to .. Now, we shall show Theorem 1. Put

p=Z E (g@I),
n geG

where n is the order of the finite group G. This projection P is used
in the proo o Theorem 6.1.1 in [3]. By the definition of the crossed
product, we have, or any h e G and any A e ,

P(hA)P= (n gI)(hA)P
1

which implies tha P(G@)P=PP. And also, we have PP=P.
In fact, for any A e ,

1 1 g(A))
1 I(A)) 1 1 g(t))

Therefore, we have
(3) P(G@)P P.
On the other hand, P is a projection belonging to ’ on G@ and

is a actor by Theorem A. Therefore is isomorphic to the induced
von Neumann algebra of induced by P ([2, p. 19]). Since
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is a II-factor and the trace of P is I/n, it follows that G(R) is iso-
morphic to

(G(R))(R)_r(),
where = is the n-dimensional Hilbert space.

Therefore, G(R)/is isomorphic to
_(R)_(/2(G))

by (3), and so, to _(R)_F(/2(G)).
The proof of Theorem 1 is a modification of the proof of

Theorem 6.1.1 in Golodets [3]. This Theorem 1 implies Theorem 6.1.1
of [3]"

Let be a IIl-factor and G a finite group of outer automorphisms
of , then the fixed algebra of under G is hyperfinite if and only

if G(R) is hyperfinite.
4. Very recently, ’M. Choda has introduced the notion of shift

for automorphism groups, which is very interesting.

If there exists a projection P in such that
(4) g(P)P- 0 for each g(:/: e) e G

and
(5) ], g(P)-- 1,

gG

then G is called a shift on. Especially, if G is finite and abelian, then
the shift is characterized as the following"

Theorem 2. A finite abelian group G is shift on if and only if
there exists a unitary representation U of the dual in such that

(6) g(Ur)--(g, 7)Ur for every g e G,
where (g, is the value of at g.

Proof. If G is a shift, then there exists a projection P of
satisfying (4) and (5). For every , of , put

Vr- ] (g, ,}g(P).
gG

Then U is a unitary o with the property (6).
Conversely, assume that there exists a unitary representation U

o G in with the property (6). Put

P-iEu,
n re

where n is the order of G. Then P is a projection of /satisfying (4)
and (5).

This paper is that inspired by a Takai’s private letter with respect
to Connes’ idea. In this place, the author would like to express his
thanks to Mr. Takai.
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