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136. Projective Modules and 3.fold Torsion Theories
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Department of Mathematics, Yamaguchi University

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

Let R be a ring with identity and R-mod the category of unital
left R-modules. A 3-fold torsion theory for R-mod is a triple (T,, T,, L)
of classes of left R-modules such that both (¥,,%,) and (T,,%,) are
torsion theories for B-mod in the sense of Dickson [2]. A class &, for
which there exist classes ¥, and £, such that (T, T,, T, is a 3-fold
torsion theory for R-mod will be called a TTF-class following Jans [3].
In this case, ,-torsion submodule ¢,(M) and &,-torsion submodule ¢,(M)
coincide with ¢,(R)-M and r,(t,(R)) respectively for any left R-module
M (cf. [4, Lemma 2.1]), where 7,(») denotes the right annihilator of x
in M.

An idempotent two-sided ideal I of R determines three classes of
left R-modules

C,={zM|IM =M},

T, ={aM|IM=0}
and

Fr={aM|r2(D=0},
and (€;,<;, F,) is then a 3-fold torsion theory for B-mod. In this case,
the €;-torsion submodule and ¥ ;-torsion submodule of a left R-module
M coincide with IM and 7,(I) respectively.

Recently, in his paper [1], Azumaya has proved that, among other
things, for a 3-fold torsion theory (€;, §;, €;) determined by the trace
ideal I of a projective R-module P, a necessary and sufficient condition
for €; to be a TTF-class is that 5, P is a generator for R/l,(I)-mod.
In this note we shall give a similar condition for §; to be a TTF-class
and look at the result due to Azumaya again from our point of view.
Throughout this note, R-modules will mean left R-modules and I(x) ((x))
will denote the left (right) annihilator for x in R.

We shall begin with a lemma which is in need of later discussions.

Lemma 1. Let I be a left ideal and K o right ideal in R. Then
the following conditions are equivalent:

1) I+K=R.

(2 For any R-module M, IM =0 implies that KM=M.

If this is the case and if we assume moreover that IK=0, then

(3) both I and K are idempotent two-sided ideals of R and I=U(K)
and K=r(), and
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4 T,=C.

In case I is an idempotent two-sided tdeal in R and K is the trace
ideal of a projective R-module P, then (4) is equivalent to

(5) g, P is a generator for R/I-mod.

The proof is not so difficult except for the last part. (3) of this
lemma is due to [1, Lemma 1]. As is easily seen, ;=C; means that
IK =0 (or, equivalently, IP=0) and ,;CC,. This also means that P
is an R/I-module and is a generator for R/I-mod, since € consists of
those R-modules which are epimorphic images of direct sums of copies
of P.

We shall say that a 3-fold torsion theory (£, T,, T,) for R-mod has
length 2 if &, =T,.

The first halves of the following propositions may be seen as slightly
different versions of [1, Theorem 3].

Proposition 2. Let (Z,,%,,T,) be a 3-fold torsion theory for R-
mod. Then ¥, is a TTF-class if and only if

t,(R)+7r({,(R)=R.
Moreover, if this is the case, (T,,%,, T,) has length 2 if and only if
r(t,(R))-t,(R)=0.

Proof. Suppose that X,is a TTF-class. Then there exists a class
¥ of R-modules such that (¥,, T,, T) is also a 3-fold torsion theory for
R-mod and so by [4, Lemma 2.1] £,=C,;,z,- On the other hand,
(T,,T,, T, is a 3-fold torsion theory for R-mod and so T,=T, .
Hence, by Lemma 1, we have that ¢,(R) +r(t,(R))=R.

Conversely, assume that £, (R)+r(t,(R))=R. Since t,(R) r(t,(R))
=0, again by Lemma 1 we have that »(¢,(R)) is an idempotent two-sided
idealin R and ¥, =%,z =C,,&),. From this it follows that &,=%,, z,
and hence ¥, is in fact a TTF-class.

Suppose now that ¥, is a TTF-class and that (T,, T,, T,) has length
2. Then, by definition, €, », =%,z and this also coincides with T, ,z),
by Lemma 1. Hence 7(¢,(R)) -t,(R)=0. Conversely, suppose that <,
is a TTF-class and that r(t,(R))-t,(R)=0. Then, by Lemma 1, T, x),
=€,z and this also coincides with &, again by Lemma 1. This
shows that ¥,=%, and thus (T,, T,, T,) has length 2 by definition.

The last part of this proposition has already pointed out in [6,
Corollary 1].

Proposition 3. Let (T,,T,, T,) be a 3-fold torsion theory for R-
mod. Then ¥, is a TTF-class if and only if

It (R)+t(R)=R.
Moreover, if this is the case, (¥,,T,, T, has length 2 if and only if
t,(R) - U(t,(R)=0.
Proof. Suppose that T, is a TTF-class. Then there exists a class
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< of R-modules such that (T, T, T,) is also a 3-fold torsion theory for
R-mod. If we denote by ¢(M) the T-torsion submodule of an R-module
M, then, by Proposition 2, t(R)+r({t(R))=R. Since r(t(R))=t,(R) and
since t(R)-r(t(R)) =0, we have that t(R)=I1(t,(R)). Thus, I(t,(R))+t,(R)
=R.

Conversely, assume that I({,(R))+t(R)=R. Since I(t,(R))-t,(R)
=0, it follows from Lemma 1 that I({,(R)) is an idempotent two-sided
ideal in R and T, z),=C;,r,=%,. Thus, ¥, is in fact a TTF-class.

Suppose now that ¥, is a TTF-class and that (T}, T,, T,) has length
2. Then, by definition, €,z =%,k and hence 0=¢,(R) -t(R)
=t(R)-U(t,(R)). Conversely suppose that €, is a TTF-class and that
t(R)-U(t(R))=0. Then, by Lemma 1, T, z),=C:,x and this also co-
incides with $;,z, again by Lemma 1. This shows that £,=%, and
thus (T,, T,, T,) has length 2 by definition.

Proposition 4. Let (,,X,) be a hereditary torsion theory for R-
mod such that any simple R-module belonging to T, has the projective
cover. Then T, is a TTF-class if and only if there exists a projective
R-module P with trace ideal I such that T,=%;.

Proof. Let {S,}.c. be a complete set of representatives for the
isomorphism classes of simple R-modules belonging to ¥,, P denotes
the direct sum of projective covers of S,,xc A, and I denotes its trace
ideal. Suppose that &, is a TTF-class. Then, by [5, Proposition 1],
<, is closed under minimal epimorphisms and P belongs to €,. Hence
T,CE;.

If we assume that there is an R-module M such that IM =0, i.e.,
Homg (P, M)=0, and that {,(M)+#0. Then we can find an « (#0) in
t,(M) and a simple R-module S belonging to &, such that

Rz—L5>8—0
is exact. Let us denote by P(S) the projective cover of S and by = the
minimal epimorphism of P(S) to S. Then there exists a homomor-
phism 7 of P(S) to Rx such that foh=z. We can extend % to a homo-
morphism h* of P to M naturally, but by assumption 2*=0 and so =
=0, a contradiction. This shows that ¥,=%;. Since the “if” part is
clear, this completes the proof of the proposition.

Remark. It follows from this proposition that any hereditary 3-
fold torsion theory (%,,X,, £,) for R-mod over a semiperfect ring R is
determined by the trace ideal I of a certain projective R-module P.
However, in this case we can show that

ID+I=R
and hence, by Proposition 3, &, is in fact a TTF-class. This result
has already obtained by [5, Proposition 2].
To see this, let e, e, - - -, e, be an orthogonal set of primitive idem-
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potents of R whose sum is 1, the identity of R. We may assume that
I+0. Then e; el if and only if ¢;R=e¢,I, or equivalently, ¢,/=0. For,
suppose that e¢,/#0. Then there exists an a (#0) in ¢,I. Since Ra
cI, Ra belongs to T,=¢; and hence Io=I(Ra)=Ra. So a is in Ia and
we can find some z in I such that a=za. Since (1—e,x)a=0, if we
assume that e,/ Ce;N, where N denotes the Jacobson radical of R, then
e;x is in N and hence a=0, a contradiction. Since e¢;N is a unique
maximal submodule of ¢;R, e;,I must be equal to ¢,R.

Now I=¢I+ -- - +e,I and there exists some ¢ such that ¢;,/0. So
we may assume that ¢, /+#0, 1<i<m, and ¢, /=0, m+1<i<n. Then
I=¢l+.---+e,I=¢R+-.--+e,R=¢R, where e=e¢,+---+e,, and so
II)=R(1—e). Thus we have I(I)+I=R.

Theorem 5. Let P be a projective R-module with trace ideal I
such that any simple R-module belonging to T ; has the projective cover.
Then

Q) P is a TTF-class if and only if there exists a projective R-
module Q with trace ideal r(I) such that z,;Q is a generator for R/I-mod.

(2) If this is the case, then (€;, T;, F;) has length 2 if and only if
r(I)-P=0, and this is so if and only if g, o P is a generator for R/r(I)-
mod.

Proof. Suppose that §; is a TTF-class. Then, by Proposition 4,
there exists a projective R-module @ with trace ideal K such that %,
=%,. Hence ,;,=C; and I+ K=R by Lemma 1. Since K belongs to
Cx,IK=0 and again by Lemma 1 we have K=7(I). The rest of (1)
follows from the same lemma.

(2) follows from Proposition 2 and Lemma 1. This completes
the proof of the theorem.

Finally, we shall close the paper with the following theorem whose
first half is due to [1, Proposition 11].

Theorem 6. Let P be a projective R-module with trace ideal I.
Then,

1) €; s a TTF-class if and only if g, qP is a generator for R[UI)-
mod.

(2) If this is the case and if we assume moreover that R is semi-
perfect, then there exists a projective R-module Q with trace ideal I(I),
and (€;,Z;, Fr) has length 2 if and only if 1Q =0, and this is so if and
only if z,;Q s & generator for R/I-mod.

Proof. (1) By Proposition 3, €; is a TTF-class if and only if
I)+I=R, and this is so if and only if ¥,,,=C¢; by Lemma 1. This
means that P is a generator for R/I(I)-mod again by Lemma 1.

(2) Suppose that €; is a TTF-class and that R is semiperfect.
Then, as was pointed out in the proof of [5, Proposition 2], there exists
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a projective R-module Q with trace ideal K such that €,=%;. Hence
we have K=I[(I). The rest of (2) follows from Lemma 1 and Proposition
3. This completes the proof of the theorem.

Added in proof. After submitting this paper, we became aware
that Theorems 5 and 6 can be proved without restricted conditions. Its
proof will appear somewhere.
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