122. The Fixed Point Set of an Involution and Theorems of the Borsuk.Ulam Type

By Akio Hattori
Department of Mathematics, University of Tokyo
(Comm. by Kunihiko Kodaira, m. J. a., Oct. 12, 1974)

1. Statement of results. In this note, h^{*} will denote either the unoriented cobordism theory Ω^{*} or the usual cohomology theory with \boldsymbol{Z}_{2}-coefficients $H^{*}\left(; \boldsymbol{Z}_{2}\right)$. The corresponding equivariant cohomology theory for \boldsymbol{Z}_{2}-spaces will be denoted by $h_{\boldsymbol{Z}_{2}}^{*}$.

Let M be a manifold and σ an involution on $M .{ }^{11}$ We define an embedding $\Delta: M \rightarrow M^{2}=M \times M$ by $\Delta(x)=(x, \sigma x)$. Then Δ is equivariant with respect to the involution σ on M and the involution T on M^{2} which is defined by $T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$. Let $\Delta_{!}: h_{Z_{2}}^{q}(M) \rightarrow h_{Z_{2}}^{q+m}\left(M^{2}\right)$ denote the Gysin homomorphism for Δ, where $m=\operatorname{dim} M$. We put $\theta(\sigma)=\Delta_{!}(1)$ $\in h_{Z_{2}}^{m}\left(M^{2}\right)$.

In the present note we shall give an explicit formula for $\theta(\sigma)$ and apply it to get theorems of the Borsuk-Ulam type. Our results generalize those of Nakaoka [3], [4]. From the formula for $\theta(\sigma)$ we shall also derive a sort of integrality theorem concernining the fixed point set of σ; see Theorem 4. Detailed accounts will appear elsewhere.

Let S^{∞} be the infinite dimensional sphere with the antipodal involution. The projection $\pi: S^{\infty} \times M^{2} \rightarrow S^{\infty} \times M^{2}$ induces the Gysin homomorphism $\pi_{!}: h^{*}\left(M^{2}\right) \rightarrow h_{Z_{2}}^{*}\left(M^{2}\right)$ and the usual homomorphism $\pi^{*}: h_{Z_{2}}^{*}\left(M^{2}\right)$ $\rightarrow h^{*}\left(M^{2}\right)$. Let $d: M \rightarrow M^{2}$ be the diagonal map. Since $d(M)$ is the fixed point set of $T, h_{Z_{2}}^{*}(d(M))$ is isomorphic to $h_{Z_{2}}^{*}(p t){ }_{h^{*}(p t)}^{\otimes} h^{*}(M)$ and d induces $d^{*}: h_{\mathbf{Z}_{2}}^{*}\left(M^{2}\right) \rightarrow h_{\mathbf{Z}_{2}}^{*}(p t) \underset{h^{*}(p t)}{\otimes} h^{*}(M)$.

Lemma 1. The homomorphism
is injective.

$$
\pi^{*} \oplus d^{*}: h_{Z_{2}}^{*}\left(M^{2}\right) \rightarrow h^{*}\left(M^{2}\right) \oplus\left(h_{Z_{2}}^{*}(p t) \bigotimes_{h^{*}(p t)}^{\otimes} h^{*}(M)\right)
$$

We denote by S the multiplicative set $\left\{w_{1}^{k} \mid k \geq 1\right\}$ in $h_{\boldsymbol{Z}_{2}}^{*}(p t)=h^{*}\left(P^{\infty}\right)$ where w_{1} is the universal first Stiefel-Whitney class. If X is a $Z_{2}-$ space then $h_{Z_{2}}^{*}(X)$ is an $h_{Z_{2}}^{*}(p t)$-module and we can consider the localized ring $S^{-1} h_{Z_{2}}^{*}(X)$ of $h_{Z_{2}}^{*}(X)$ with respect to S. Note that $h_{Z_{2}}^{*}(p t)$ is isomorphic to a formal power series ring $h^{*}(p t)\left[\left[w_{1}\right]\right]$ and $h_{Z_{2}}^{*}(p t) \underset{h^{*}(p t)}{\otimes} h^{*}(M)$

1) In this note we work in the smooth category. All manifolds will be connected, compact and without boundary unless otherwise stated.
is canonically embedded in $\left(S^{-1} h_{Z_{2}}^{*}(p t)\right){ }_{h^{*}(p t)}^{\otimes} h^{*}(M)$.
To state our main theorem we need some notations. Let $P: h^{q}(M)$ $\rightarrow h_{Z_{2}}^{2 q}\left(M^{2}\right)$ be the Steenrod-tom Dieck operation; see [4], [6]. For u $\in h^{q}(M)$ we define $P_{0}(u)$ to be $d^{*} P(u) / w_{1}^{2 q}$. Then P_{0} is extended to a ring homomorphism $P_{0}: h^{*}(M) \rightarrow\left(S^{-1} h_{Z_{2}}^{*}(p t)\right){ }_{h^{*}(p t)}^{\otimes} h^{*}(M)$. For a real vector bundle ξ over a $C W$-complex X its h^{*}-theory $W u$ classes $v_{\alpha}(\xi)$ $\in h^{*}(X)$ are defined in a similar way as in [5]. The $W u$ classes of the tangent bundle of a manifold X will be denoted by $v_{\alpha}(X)$. Finally we define $a_{j}(x) \in h^{*}(p t)[[x]]$ by

$$
F(x, y)=\sum_{0 \leq j} a_{j}(x) y^{j}
$$

where F is the formal group law of the theory h^{*}. For a multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots\right)$ we put $\alpha^{\alpha}(x)=\prod_{1 \leq j} \alpha_{j}^{\alpha j}(x), l(\alpha)=\sum_{j} \alpha_{j}$ and $|\alpha|=\sum_{j} j \alpha_{j}$, cf. [6].

Theorem 2. Let M be a manifold and σ an involution on M. Let F be the fixed point set of σ. F is a disjoint union of submanifolds F_{1}, \cdots, F_{l}.
i) $\pi^{*} \theta(\sigma) \in h^{*}\left(M^{2}\right)$ is given by

$$
\pi^{*} \theta(\sigma)=\Delta_{!}(1)
$$

where the Δ_{1} on the right-hand side is the usual Gysin homomorphism $h^{*}(M) \rightarrow h^{*}\left(M^{2}\right)$. If $\left\{u_{i}\right\}$ is a homogeneous $h^{*}(p t)$ basis of $h^{*}(M)$ and $\Delta_{\mathrm{I}}(1)=\sum a_{i j} u_{i} \times u_{j}$ with $a_{i j} \in h^{*}(p t)$ then the $a_{i j}$'s satisfy the relation

$$
\left.\sum_{j} a_{i j} c_{j k}=\delta_{i k} \quad \text { (the Kronecker } \delta\right)
$$

where $c_{j k}=p_{\mathrm{t}}\left(u_{j} \cup \sigma^{*} u_{k}\right)$ with $p: M \rightarrow p t$.
ii) $d^{*} \theta(\sigma) \in h_{\mathbf{Z}_{2}}^{*}(p t) \underset{h^{*}(p t)}{\otimes} h^{*}(M) \subset\left(S^{-1} h_{\mathbf{Z}_{2}}^{*}(p t)\right){\underset{h}{ }{ }^{*}(p t)}_{\otimes}^{*} h^{*}(M)$
is given by

$$
d^{*} \theta(\sigma)=w_{1}^{m} \frac{\sum_{i=1}^{l} \sum_{\alpha} w_{1}^{2(-l(\alpha)+|\alpha|)} a^{2 \alpha}\left(w_{1}\right) P_{0}\left(j_{1}\left(v_{\alpha}\left(F_{i}\right)^{2}\right)\right.}{\sum_{\alpha} w_{1}^{-l(\alpha)+|\alpha|} a^{\alpha}\left(w_{1}\right) P_{0}\left(v_{\alpha}(M)\right)}
$$

where j_{1} is the Gysin homomorphism of the inclusion $j: F \subset M$ and m $=\operatorname{dim} M$.

Remark 3. In Theorem 2, when the theory h^{*} is the usual cohomology theory $H^{*}\left(; \boldsymbol{Z}_{2}\right)$, the formula for $d^{*} \theta(\sigma)$ reduces to

$$
d^{*} \theta(\sigma)=w_{1}^{m} P_{0}\left(\left\{\sum_{i=1}^{l} \sum_{s=0}^{\left[f_{i} / 2\right]} j_{1}\left(v_{s}\left(F_{i}\right)^{2}\right)\right\} /\left\{\sum_{s=0}^{[m / 2]} v_{s}(M)\right\}\right)
$$

where $f_{i}=\operatorname{dim} F_{i}$.
Theorem 4. Let M, σ and F_{i} be as in Theorem 2. Suppose that $h^{*}=H^{*}\left(; \boldsymbol{Z}_{2}\right)$. If we write

$$
\sum_{i=1}^{l} \sum_{s=0}^{\left[f_{i} / 2\right]} j_{!}\left(v_{s}\left(F_{i}\right)^{2}\right) / \sum_{s=0}^{[m / 2]} v_{s}(M)=\sum_{i=0}^{m} u_{i}
$$

where $u_{i} \in H^{i}\left(M ; \boldsymbol{Z}_{2}\right)$, then we must have

$$
u_{i}=0 \quad \text { for } \quad i>\frac{m}{2} .
$$

Corollary 5. Under the situation of Theorem 4 the element $\theta(\sigma) \in H_{Z_{2}}^{m}\left(M^{2} ; Z_{2}\right)$ is given by

$$
\theta(\sigma)=\sum_{i=0}^{[m / 2]} w_{1}^{m-2 i} P\left(u_{i}\right)+\theta_{1}
$$

where θ_{1} is characterized by the conditions
a) $\theta_{1} \in \pi_{!}$-image
and
b) $\quad \pi^{*} \theta_{1}=\Delta_{!}(1)+u_{m / 2} \times u_{m / 2}$.

Corollary 6. Under the situation of Theorem 4 assume moreover that $\operatorname{dim} F_{i}<\operatorname{dim} M / 2$ for all i. Then

$$
\sum_{i=1}^{l} \sum_{s=0}^{\left[f_{i} / 2\right]} j_{!}\left(v_{s}\left(F_{i}\right)^{2}\right)=0
$$

and $\theta(\sigma) \in H_{Z_{2}}^{*}\left(M^{2} ; Z_{2}\right)$ is characterized by the conditions
a) $\theta(\sigma) \in \pi_{!}$-image
and
b) $\pi^{*} \theta(\sigma)=\Delta_{!}(1)$.

Corollary 7. Let M be an m-manifold which is a \boldsymbol{Z}_{2}-homology sphere and σ an involution on M. Then, in the usual homology theory $H^{*}\left(; \boldsymbol{Z}_{2}\right)$, the element $\theta(\sigma) \in H_{Z_{2}}^{m}\left(M^{2} ; Z_{2}\right)$ is given by

$$
\theta(\sigma)=\left\{\begin{array}{l}
\pi_{!}(1 \times \mu) \quad \text { if } \sigma \text { is not trivial, } \\
w_{1}^{m}+\pi_{!}(1 \times \mu) \quad \text { if } \sigma \text { is trivial },
\end{array}\right.
$$

where $\mu \in H^{m}\left(M ; Z_{2}\right)$ is the cofundamental class.
Now let N be another manifold with an involution τ and $f: N \rightarrow M$ a continuous map. We put

$$
A(f)=\{y \mid y \in N, f \tau(y)=\sigma f(y)\}
$$

and define an equivariant $\operatorname{map} \hat{f}: N \rightarrow M^{2}$ by $\hat{f}(y)=(f(y), f \tau(y))$. The following is fundamental for our theorems of the Borsuk-Ulam type.

Theorem 8. If $A(f)=\phi$ then the class $\hat{f}^{*} \theta(\sigma) \in h_{Z_{2}}^{m}(N)$ vanishes.
Corollary 9. Let \bar{f} denote the restriction of f on the fixed point set $F(\tau)$ of τ. Suppose that we have

$$
\bar{f}^{*}\left(\sum_{i=1}^{l} \sum_{s=0}^{\left[f_{i} / 2\right]} j_{\mathrm{t}}\left(v_{s}\left(F_{i}\right)^{2}\right)\right) \neq 0
$$

in $H_{Z_{2}}^{*}(p t) \otimes H^{*}\left(F(\tau) ; \boldsymbol{Z}_{2}\right)$ then the set $A(f)$ is not empty.
When the involution τ on N is free the module $h_{Z_{2}}^{*}(N)$ is canonically identified with $h^{*}\left(N / \boldsymbol{Z}_{2}\right)$.

Corollary 10. Let M and N be manifolds of the same dimension m. Let σ be an involution on M such that $\operatorname{dim} F_{i}<\frac{m}{2}$ for all components F_{i} of the fixed point set of σ. Let τ be a free involution on N and $f: N \rightarrow M$ a continuous map. Then, in the usual cohomology,
the evaluation of the class $\hat{f}^{*} \theta(\sigma) \in H^{m}\left(N / Z_{2}\right)$ on the fundamental class [N / Z_{2}] is given by

$$
\left\langle\left[N / \boldsymbol{Z}_{2}\right], \hat{f}^{*} \theta(\sigma)\right\rangle=\hat{\chi}(f)
$$

where $\hat{\chi}(f)$ is the equivariant Lefschetz number of f as defined in [3]. Consequently if $\hat{\chi}(f) \neq 0$, then $A(f) \neq \phi$.

Corollary 11. Let M be an m-manifold which is a Z_{2}-homology sphere with an involution σ. Let N be an m-manifold with a free involution τ and $f: N \rightarrow M$ a map. Then we have

$$
\left\langle\left[N / Z_{2}\right], \hat{f}^{*} \theta(\sigma)\right\rangle=\left\{\begin{array}{l}
1+\operatorname{deg} f \quad \text { if } \sigma \text { is trivial, } \\
\operatorname{deg} f \quad \text { if } \sigma \text { is not trivial. }
\end{array}\right.
$$

Consequently if σ is not trivial and $\operatorname{deg} f \neq 0$, then $A(f) \neq \phi$.
2. Indication of proofs. Lemma 1 is a consequence of the following structure theorem for $h_{Z_{2}}^{*}\left(M^{2}\right)$ and a localization theorem due to tom Dieck [2] applied to the diagonal map d.

Theorem 12. In $h_{Z_{2}}^{*}\left(M^{2}\right)$ the union $\bigcup_{k \geq 1}\left(U w_{1}^{k}\right.$-kernel $)$ coincides with π_{1}-image which is isomorphic to $h^{*}\left(M^{2}\right) / h^{*}\left(M^{2}\right)^{T}$ through π_{1}. The homorphism π^{*} restricted on $\pi_{!}$-image is injective. The quotient $h_{Z_{2}}^{*}\left(M^{2}\right) /\left(\pi_{1}\right.$-image $)$ is a free $h_{Z_{2}}^{*}(p t)$-module and is generated by P-image. Its rank is equal to the rank of the $h^{*}(p t)$-module $h^{*}(M)$.

Theorem 12 is proved using the Gysin exact sequence of the double covering $\pi: S^{\infty} \times M^{2} \rightarrow S_{Z_{2}}^{\infty} \times M^{2}$ and the following properties of π_{1}, π^{*} and P :

$$
\begin{aligned}
& \pi^{*} \pi_{1}(u \times v)=u \times v+v \times u \\
& \pi^{*} P(u)=u \times u
\end{aligned}
$$

Part i) of Theorem 2 follows from the commutativity of the diagram

which holds since π is a covering projection.
In order to prove Part ii) we consider the submanifolds $\Delta(M)$ and $d(M)$ of M^{2}. They are invariant under the action T. Their intersection is canonically identified with F. Let $j^{\prime}: F \subset \Delta(M)$ and $j: F$ $\subset d(M)$ be the inclusions. Let $\nu_{j^{\prime}}$ and ν_{d} be the normal bundles of j^{\prime} and d respectively. We see that $\Delta(M)$ and $d(M)$ cut each other cleanly along F, that is, ν_{j}, is a subbundle of $j^{*} \nu_{d}$. Thus we have the excess bundle $E=j^{*} \nu_{d} / \nu_{j}$, and it follows from the clean intersection formula (cf. [6]) that

$$
d^{*} \Delta_{!}(1)=j_{!}(e(E))
$$

where $e(E) \in h_{Z_{2}}^{*}(p t) \underset{h^{*}(p t)}{\otimes} h^{*}(F)$ is the h^{*}-theory Euler class of the bundle E with Z_{2}-action. In our situation we have

Lemma 13. The bundle E is isomorphic to the normal bundle $\nu_{d^{\prime}}$ of the diagonal map $d^{\prime}: F \rightarrow F^{2}$ where the Z_{2}-action on $\nu_{d^{\prime}}$ is induced from T.

From Lemma 13 and the clean intersection formula applied to the commutative diagram

we infer that
(*)

$$
d^{*} \Delta_{!}(1)=d^{*}\left(\frac{\left(j^{2}\right)_{!}\left(d_{!}^{\prime}(1)^{2}\right)}{d_{!}(1)}\right)
$$

in $\left(S^{-1} h_{Z_{2}}^{*}(p t) \underset{h^{*}(p, t)}{\otimes} h^{*}(M)\right.$. But we have a formula due to Nakaoka [5] which expresses $d_{1}(1)$ in terms of $v_{\alpha}(M), P_{0}$ and $\alpha^{\alpha}\left(w_{1}\right)$ and a similar one for $d_{!}^{\prime}(1)$. Using these in ($*$) we obtain the formula in Part ii) of Theorem 2.

Finally Theorem 8 follows from the fact that $\hat{f}^{*} \theta(\sigma)$ is the Poincare dual (in the equivariant cohomology) of $\hat{f}^{-1}(\Delta(M))=A(f)$ in N.

References

[1] Tammo tom Dieck: Steenrod-Operationen in Kobordismen-Theorien. Math. Zeit., 107, 380-401 (1968).
[2] -: Lokalisierung äquivarianter Kohomologie-Theorien. Math. Zeit., 121, 253-262 (1971).
[3] M. Nakaoka: Continuous maps of manifolds with involution. I. Osaka J. Math., 11, 129-145 (1974).
[4] ——: idem II. Osaka J. Math., 147-162 (1974).
[5] -: Characteristic classes with values in complex cobordism. Osaka J. Math., 10, 542-543 (1973).
[6] D. Quillen: Elementary proofs of some results of cobordism theory using Steenrod operations. Advances in Math., 7, 29-56 (1971).

