No. 8]

122. The Fixed Point Set of an Involution and Theorems of the Borsuk-Ulam Type

By Akio HATTORI

Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Oct. 12, 1974)

1. Statement of results. In this note, h^* will denote either the unoriented cobordism theory \mathcal{N}^* or the usual cohomology theory with \mathbb{Z}_2 -coefficients $H^*(; \mathbb{Z}_2)$. The corresponding equivariant cohomology theory for \mathbb{Z}_2 -spaces will be denoted by $h_{\mathbb{Z}_2}^*$.

Let M be a manifold and σ an involution on M.¹⁾ We define an embedding $\Delta: M \to M^2 = M \times M$ by $\Delta(x) = (x, \sigma x)$. Then Δ is equivariant with respect to the involution σ on M and the involution T on M^2 which is defined by $T(x_1, x_2) = (x_2, x_1)$. Let $\Delta_1: h_{\mathbb{Z}_2}^q(M) \to h_{\mathbb{Z}_2}^{q+m}(M^2)$ denote the Gysin homomorphism for Δ , where $m = \dim M$. We put $\theta(\sigma) = \Delta_1(1)$ $\in h_{\mathbb{Z}_2}^m(M^2)$.

In the present note we shall give an explicit formula for $\theta(\sigma)$ and apply it to get theorems of the Borsuk-Ulam type. Our results generalize those of Nakaoka [3], [4]. From the formula for $\theta(\sigma)$ we shall also derive a sort of integrality theorem concerning the fixed point set of σ ; see Theorem 4. Detailed accounts will appear elsewhere.

Let S^{∞} be the infinite dimensional sphere with the antipodal involution. The projection $\pi: S^{\infty} \times M^2 \to S^{\infty} \times M^2$ induces the Gysin homomorphism $\pi_1: h^*(M^2) \to h^*_{Z_2}(M^2)$ and the usual homomorphism $\pi^*: h^*_{Z_2}(M^2) \to h^*(M^2)$. Let $d: M \to M^2$ be the diagonal map. Since d(M) is the fixed point set of $T, h^*_{Z_2}(d(M))$ is isomorphic to $h^*_{Z_2}(pt) \bigotimes_{h^*(pt)} h^*(M)$ and d

induces $d^*: h^*_{Z_2}(M^2) \rightarrow h^*_{Z_2}(pt) \bigotimes_{h^*(pt)} h^*(M).$

Lemma 1. The homomorphism $\pi^* \oplus d^* : h^*_{Z_2}(M^2) \to h^*(M^2) \oplus (h^*_{Z_2}(pt) \bigotimes_{h^*(pt)} h^*(M))$

is injective.

We denote by S the multiplicative set $\{w_1^*|k\geq 1\}$ in $h_{Z_2}^*(pt)=h^*(P^{\infty})$ where w_1 is the universal first Stiefel-Whitney class. If X is a Z_2 space then $h_{Z_2}^*(X)$ is an $h_{Z_2}^*(pt)$ -module and we can consider the localized ring $S^{-1}h_{Z_2}^*(X)$ of $h_{Z_2}^*(X)$ with respect to S. Note that $h_{Z_2}^*(pt)$ is isomorphic to a formal power series ring $h^*(pt)[[w_1]]$ and $h_{Z_2}^*(pt) \bigotimes_{h^*(pt)} h^*(M)$

¹⁾ In this note we work in the smooth category. All manifolds will be connected, compact and without boundary unless otherwise stated.

A. HATTORI

is canonically embedded in $(S^{-1}h_{\mathbb{Z}_2}^*(pt)) \bigotimes_{h^*(pt)} h^*(M)$.

To state our main theorem we need some notations. Let $P: h^q(M) \rightarrow h_{Z_2}^{2q}(M^2)$ be the Steenrod-tom Dieck operation; see [4], [6]. For $u \in h^q(M)$ we define $P_0(u)$ to be $d^*P(u)/w_1^{2q}$. Then P_0 is extended to a ring homomorphism $P_0: h^*(M) \rightarrow (S^{-1}h_{Z_2}^*(pt)) \bigotimes_{h^*(pt)} h^*(M)$. For a real vector bundle ξ over a *CW*-complex X its h^* -theory Wu classes $v_a(\xi) \in h^*(X)$ are defined in a similar way as in [5]. The Wu classes of the tangent bundle of a manifold X will be denoted by $v_a(X)$. Finally we define $a_q(x) \in h^*(pt)[[x]]$ by

$$F(x, y) = \sum_{0 \le j} a_j(x) y^j$$

where *F* is the formal group law of the theory h^* . For a multi-index $\alpha = (\alpha_1, \alpha_2, \cdots)$ we put $a^{\alpha}(x) = \prod_{1 \le j} a_j^{\alpha_j}(x)$, $l(\alpha) = \sum_j \alpha_j$ and $|\alpha| = \sum_j j\alpha_j$, cf. [6].

Theorem 2. Let M be a manifold and σ an involution on M. Let F be the fixed point set of σ . F is a disjoint union of submanifolds F_1, \dots, F_l .

i) $\pi^*\theta(\sigma) \in h^*(M^2)$ is given by

$$\pi^*\theta(\sigma) = \mathcal{A}_!(1)$$

where the Δ_1 on the right-hand side is the usual Gysin homomorphism $h^*(M) \rightarrow h^*(M^2)$. If $\{u_i\}$ is a homogeneous $h^*(pt)$ basis of $h^*(M)$ and $\Delta_1(1) = \sum a_{ij}u_i \times u_j$ with $a_{ij} \in h^*(pt)$ then the a_{ij} 's satisfy the relation

 $\sum_{j} a_{ij} c_{jk} = \delta_{ik} \qquad (the \ Kronecker \ \delta)$

where $c_{jk} = p_{!}(u_{j} \cup \sigma^{*}u_{k})$ with $p: M \rightarrow pt$.

ii) $d^*\theta(\sigma) \in h^*_{Z_2}(pt) \bigotimes_{h^*(pt)} h^*(M) \subset (S^{-1}h^*_{Z_2}(pt)) \bigotimes_{h^*(pt)} h^*(M)$

is given by

$$d^{*}\theta(\sigma) = w_{1}^{m} \frac{\sum_{i=1}^{l} \sum_{\alpha} w_{1}^{2(-l(\alpha)+|\alpha|)} a^{2\alpha}(w_{1}) P_{0}(j_{!}(v_{\alpha}(F_{i})^{2}))}{\sum_{\alpha} w_{1}^{-l(\alpha)+|\alpha|} a^{\alpha}(w_{1}) P_{0}(v_{\alpha}(M))}$$

where j_1 is the Gysin homomorphism of the inclusion $j: F \subset M$ and $m = \dim M$.

Remark 3. In Theorem 2, when the theory h^* is the usual cohomology theory $H^*(; \mathbb{Z}_2)$, the formula for $d^*\theta(\sigma)$ reduces to

$$d^*\theta(\sigma) = w_1^m P_0\left(\left\{\sum_{i=1}^l \sum_{s=0}^{\lfloor f_i/2 \rfloor} j_1(v_s(F_i)^2)\right\} \middle/ \left\{\sum_{s=0}^{\lfloor m/2 \rfloor} v_s(M)\right\}\right)$$

where $f_i = \dim F_i$.

Theorem 4. Let M, σ and F_i be as in Theorem 2. Suppose that $h^* = H^*(; \mathbb{Z}_2)$. If we write

$$\sum_{i=1}^{l} \sum_{s=0}^{\lfloor f_i/2 \rfloor} j_1(v_s(F_i)^2) / \sum_{s=0}^{\lfloor m/2 \rfloor} v_s(M) = \sum_{i=0}^{m} u_i$$

where $u_i \in H^i(M; \mathbb{Z}_2)$, then we must have

Theorems of Borsuk-Ulam Type

$$u_i = 0$$
 for $i > \frac{m}{2}$.

Corollary 5. Under the situation of Theorem 4 the element $\theta(\sigma) \in H^m_{\mathbb{Z}_2}(M^2; \mathbb{Z}_2)$ is given by

$$\theta(\sigma) = \sum_{i=0}^{\lfloor m/2 \rfloor} w_1^{m-2i} P(u_i) + \theta_1$$

where θ_1 is characterized by the conditions

a) $\theta_1 \in \pi_!$ -image

and

b) $\pi^* \theta_1 = \Delta_1(1) + u_{m/2} \times u_{m/2}$.

Corollary 6. Under the situation of Theorem 4 assume moreover that dim $F_i \leq \dim M/2$ for all i. Then

$$\sum_{i=1}^{l}\sum_{s=0}^{\lfloor f_i/2 \rfloor} j_!(v_s(F_i)^2) = 0$$

and $\theta(\sigma) \in H^*_{Z_2}(M^2; \mathbb{Z}_2)$ is characterized by the conditions

a) $\theta(\sigma) \in \pi_1$ -image

and

b) $\pi^*\theta(\sigma) = \Delta_!(1).$

Corollary 7. Let M be an m-manifold which is a \mathbb{Z}_2 -homology sphere and σ an involution on M. Then, in the usual homology theory $H^*(; \mathbb{Z}_2)$, the element $\theta(\sigma) \in H^m_{\mathbb{Z}_2}(M^2; \mathbb{Z}_2)$ is given by

 $\theta(\sigma) = \begin{cases} \pi_1(1 \times \mu) & \text{if } \sigma \text{ is not trivial,} \\ w_1^m + \pi_1(1 \times \mu) & \text{if } \sigma \text{ is trivial,} \end{cases}$

where $\mu \in H^m(M; \mathbb{Z}_2)$ is the cofundamental class.

Now let N be another manifold with an involution τ and $f: N \rightarrow M$ a continuous map. We put

 $A(f) = \{ y | y \in N, f\tau(y) = \sigma f(y) \}$

and define an equivariant map $\hat{f}: N \to M^2$ by $\hat{f}(y) = (f(y), f\tau(y))$. The following is fundamental for our theorems of the Borsuk-Ulam type.

Theorem 8. If $A(f) = \phi$ then the class $\hat{f}^* \theta(\sigma) \in h_{\mathbb{Z}_2}^m(N)$ vanishes.

Corollary 9. Let \overline{f} denote the restriction of f on the fixed point set $F(\tau)$ of τ . Suppose that we have

$$\bar{f}^*\left(\sum_{i=1}^l\sum_{s=0}^{\lfloor f_i/2\rfloor}j_1(v_s(F_i)^2)\right)\neq 0$$

in $H^*_{Z_2}(pt) \otimes H^*(F(\tau); \mathbb{Z}_2)$ then the set A(f) is not empty.

When the involution τ on N is free the module $h_{\mathbb{Z}_2}^*(N)$ is canonically identified with $h^*(N/\mathbb{Z}_2)$.

Corollary 10. Let M and N be manifolds of the same dimension m. Let σ be an involution on M such that dim $F_i < \frac{m}{2}$ for all com-

ponents F_i of the fixed point set of σ . Let τ be a free involution on N and $f: N \rightarrow M$ a continuous map. Then, in the usual cohomology,

539

the evaluation of the class $\hat{f}^*\theta(\sigma) \in H^m(N/\mathbb{Z}_2)$ on the fundamental class $[N/\mathbb{Z}_2]$ is given by

$$\langle [N/Z_2], \hat{f}^*\theta(\sigma) \rangle = \hat{\chi}(f)$$

where $\hat{\chi}(f)$ is the equivariant Lefschetz number of f as defined in [3]. Consequently if $\hat{\chi}(f) \neq 0$, then $A(f) \neq \phi$.

Corollary 11. Let M be an m-manifold which is a \mathbb{Z}_2 -homology sphere with an involution σ . Let N be an m-manifold with a free involution τ and $f: N \rightarrow M$ a map. Then we have

$$\langle [N/Z_2], \hat{f}^*\theta(\sigma) \rangle = \begin{cases} 1 + \deg f & \text{if } \sigma \text{ is trivial,} \\ \deg f & \text{if } \sigma \text{ is not trivial} \end{cases}$$

Consequently if σ is not trivial and deg $f \neq 0$, then $A(f) \neq \phi$.

2. Indication of proofs. Lemma 1 is a consequence of the following structure theorem for $h_{Z_2}^*(M^2)$ and a localization theorem due to tom Dieck [2] applied to the diagonal map d.

Theorem 12. In $h_{\mathbb{Z}_2}^*(M^2)$ the union $\bigcup_{k\geq 1} (\bigcup w_1^k$ -kernel) coincides with π_1 -image which is isomorphic to $h^*(M^2)/h^*(M^2)^T$ through π_1 . The homorphism π^* restricted on π_1 -image is injective. The quotient $h_{\mathbb{Z}_2}^*(M^2)/(\pi_1$ -image) is a free $h_{\mathbb{Z}_2}^*(pt)$ -module and is generated by P-image. Its rank is equal to the rank of the $h^*(pt)$ -module $h^*(M)$.

Theorem 12 is proved using the Gysin exact sequence of the double covering $\pi: S^{\infty} \times M^2 \rightarrow S^{\infty} \times M^2$ and the following properties of π_1, π^* and P:

$$\pi^*\pi_!(u \times v) = u \times v + v \times u,$$

$$\pi^*P(u) = u \times u.$$

Part i) of Theorem 2 follows from the commutativity of the diagram

$$\begin{array}{c} h^*(M) \xrightarrow{\varDelta_1} h^*(M^2) \\ \pi^* \uparrow & \uparrow \\ h^*_{Z_2}(M) \xrightarrow{\varDelta_1} h^*_{Z_2}(M^2) \end{array}$$

which holds since π is a covering projection.

In order to prove Part ii) we consider the submanifolds $\Delta(M)$ and d(M) of M^2 . They are invariant under the action T. Their intersection is canonically identified with F. Let $j': F \subset \Delta(M)$ and $j: F \subset d(M)$ be the inclusions. Let $\nu_{j'}$ and ν_a be the normal bundles of j' and d respectively. We see that $\Delta(M)$ and d(M) cut each other cleanly along F, that is, $\nu_{j'}$ is a subbundle of $j^*\nu_a$. Thus we have the excess bundle $E = j^*\nu_a/\nu_{j'}$ and it follows from the clean intersection formula (cf. [6]) that

$$d^* \Delta_!(1) = j_!(e(E))$$

where $e(E) \in h_{Z_2}^*(pt) \bigotimes_{h^*(pt)} h^*(F)$ is the h^* -theory Euler class of the bundle E with Z_2 -action. In our situation we have

Lemma 13. The bundle E is isomorphic to the normal bundle $\nu_{d'}$ of the diagonal map $d': F \rightarrow F^2$ where the \mathbb{Z}_2 -action on $\nu_{d'}$ is induced from T.

From Lemma 13 and the clean intersection formula applied to the commutative diagram

$$F \xrightarrow{d'} F^2$$

 $j \downarrow \qquad \qquad \downarrow j^2$
 $M \xrightarrow{d} M^2$

we infer that

(*)
$$d^* \Delta_1(1) = d^* \left(\frac{(j^2)_1 (d'_1(1)^2)}{d_1(1)} \right),$$

in $(S^{-1}h_{Z_2}^*(pt) \bigotimes_{h^*(pt)} h^*(M)$. But we have a formula due to Nakaoka [5] which expresses $d_1(1)$ in terms of $v_{\alpha}(M)$, P_0 and $a^{\alpha}(w_1)$ and a similar one for $d'_1(1)$. Using these in (*) we obtain the formula in Part ii) of Theorem 2.

Finally Theorem 8 follows from the fact that $\hat{f}^*\theta(\sigma)$ is the Poincaré dual (in the equivariant cohomology) of $\hat{f}^{-1}(\varDelta(M)) = A(f)$ in N.

References

- Tammo tom Dieck: Steenrod-Operationen in Kobordismen-Theorien. Math. Zeit., 107, 380-401 (1968).
- [2] —: Lokalisierung äquivarianter Kohomologie-Theorien. Math. Zeit., 121, 253-262 (1971).
- [3] M. Nakaoka: Continuous maps of manifolds with involution. I. Osaka J. Math., 11, 129-145 (1974).
- [4] -----: idem II. Osaka J. Math., 147-162 (1974).
- [5] ——: Characteristic classes with values in complex cobordism. Osaka J. Math., 10, 542-543 (1973).
- [6] D. Quillen: Elementary proofs of some results of cobordism theory using Steenrod operations. Advances in Math., 7, 29-56 (1971).