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166. Note on Approximation of Nonlinear Semigroups

By Kazuo KOBAYASI
Department of Mathematics, Waseda University, Tokyo

(Comm. by Kinjiré6 KuNuUGI, M. J. A., Nov. 12, 1974)

Let X be a Banach space with a norm | |, and let {T(t); t=0} be
a contraction (nonlinear) semigroup on a closed convex subset C of X,
namely a family of operators from C into C satisfying the following
conditions:
(i) T(©)=I (the identity), T(t+s)=T#)T(s) for t,s=0;
(ii) |T@x—T@)y|<|z—y]| for t=0 and z,ye C;
(>iii) 1111101 Tt)x=x for xe C.

For each 4, >0 we define
Ay=h(T(W—D) and J,,=T—24,)""

It is well known that J, , is a contraction operator from C into C and
that A, generates a unique contraction semigroup {T,(t); t=0} on C
such that (d/dO)T,(t)xa=A,T,()x for xc C and t=0 (e.g. see [1] and
[38]). The purpose of the present note is to prove the following

Theorem. For each x e C, we have
(a) T(t)lerilglol T,.@x

uniformly on every bounded interval of [0, o),
() T®z=lim {1 —)I+tT(h)}M 1z
Ri0

uniformly in t € [0,1], and
() Tx= lim I—24,) Uy

(3,2)=(0,0)

uniformly on every bounded interval of [0, co), where [ 1 denotes the
Gaussian bracket.

Remark. These results were obtained for x € E by I. Miyadera
[3], where E={x e C; |A,x|=0(1) as i | 0}. Recently Y. Kobayashi [2]
showed that (a) holds true for x ¢ C by using an advanced convergence
theorem.

We now set for >0 and x e C

7@ =8-sup {|T(Pax—2x|; 0=t}

Clearly y(?) is non-decreasing and y(¢) | 0 as ¢t | 0 by (iii). The follow-
ing lemma is in Crandall-Liggett [1; Lemma 3.3].

Lemma. For xzeC and >0

[J3,0%— 2| < 7(26) if 4, h<<é.

To prove Theorem we start from the following inequalities which

are found in [3; (3.4), (8.6) and one in p. 257]:
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(1) [T, @2 — Tt/ IRz < (Vh+h)| Ay

for x ¢ C and t=0;

(2) T2 — (A= O + T < (VT 4+ 1) | Aye

for x e C and £t [0,1];

(3) | Th(t)e— (I —2A,) g | <24/ + 1| A |

for x ¢ C and t=0.

In what follows we let x e C, T>0, ¢ (0,1] and 2, h<<5*. Since 4,J,,
=2"'(J,,»—1D), it follows from (1), (2), (3) and Lemma that

| TH( vz, — T[] RIR)T 702

(4) SWt+VR) T mu—a|SW €+ D@20  for t20,
5 | T W it —{(L—= ) + t TR ]
(5) <A+VT) [T nm—2|<2720)  for te[0,1]
and
T vz n@— I —2A) W] o,
(6) | T vz —T—24) %l

<2+t e —z|S2/I+E7(20)  for t=0.
Proof of (a). Since
| T@)x— T,
<|T@®)x— Tt/ rRln)x|+| Tt/ IR vz — Tt/ h1R)x|
+| Tt/ rIN) yizp2— T (D vin |+ Th(® vz n2— Tr(®)2|
S|TE—[t/ 2 —2| + 2| v — 2|+ | Tt IR v — T (D vz
<7r(W)+2r@20)+ (W t +1Dy(20)
(7) =Wt +Dy(20),
we gett sup IT®)x — T,@)x| <WT + 4y(@25). For any ¢>0 taking

6 € (0,1] so that y(25) <e/(VT +4), we have
sup |T@®)x—T,{)x|<e for h<é.

tef0,7]
Proof of (b). By (5) and (7) we obtain that
sup |T(®)z—{(A—OI+ T} x|

te[0,1]

=1+Dr@a)+ sup | w2 —{(1— I+ tT(R)} x|

<5¢(20) +2y(20)+ 2 |J yizpe— 2]
<97(20), which implies that (b) is true.
Here we have used the fact that 1—¢)I+¢tT(h) is a contraction.
Proof of (c). It also follows from (6) and (7) that
Sup | T(®)x—T—24,)" ]

=WT +9r@20)+ sup. |T(®)x— (I —2A,) ")
te0,T

SWT + 9728 +2VI+T y(20) +2 |J 7,2 — |
<3(W1+T+2)r(20).
Hence we complete the proof.
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