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1. Introduction. Let ,H be a (real) Hilbert space and X be a
reflexive Banach space such that XcH, X is dense in H and the natural
injection from X into H is continuous. We denote by X* the dual
space of X. Identifying H with its dual, we have the relations"
XHX*. Throughout this paper, let 0<T<c, l<p<c and lip
+ 1/p’ 1. Let K- {K(t) 0 <_ t _< T} be a family of closed convex
subsets of X, be a function on [0, T] X such that for each t e [0, T],
if(t; .) is a lower semicontinuous convex function on X with values in
(--c, c], and ] be a continuous function on [0, T]X such that for
each te [0, T], ](t; .) is convex on X. Suppose further that ] is
bounded on each bounded subset of [0,T] X and for each v e Lv(O,T ;X),
t4x(t; v(t)) is measurable. Then, for given f e Lv’(0, T ;X*) and u0 e X
we mean by V[K, ], , f, u0] the following problem" Find u e L(0, T ;X)
together with u* e L’(0, T;X*) such that

( i ) u is an H-valued continuous unction on [0, T] with u(0)----u0;
(ii) u(t)eK(t) for a.a. (almost all) te(0, T) and (. u(.))eL(0, T);
(iii) u*(t) e 3](t u(t)) for a.a. t e (0, T), where 3](t; .) is the sub-

differential of ](t .);
(iv) u’--(d/dt)u e L(O, T; H)

(v)

<_ {(t; (t))-(t; (t))}dt

for all e L(O, T X) 1L(O, T H) such that (t) e K(t) for a.a. t (0, T)
and k(" (’)) e L(0, T), where (., ")x and (., .) stand tor the natural
pairing between X* and X and the inner product in H, respectively.

Remark. If we take k(t .) +I(.) instead ot go(t .) we can
formulate the above problem without using K(t), where I is the
indicator tunetion of K(t).

Many results on the existence, uniqueness and regularity o solu-
tions ot this kind ot problems have been established by many authors
(e.g., [1], [], [4]-[6], [8]-[11]). Bris [.] and Moreau [6] treated the ease
where go(t .) is the indicator funetion of K(t) in this ease, the domain
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D(a(t .)) o a(t .) depends on t, since K(t)=D(a(t; .)). Watanabe
[11] dealt with the case where D(3(t .)) depends on t but {z (t z) < c}
does not depend on t. Also, a result o Pralba [8] is interesting. Their
method, except Moreau’s one, is based on the nonlinear semigroup
theory. In this paper, we shall show the existence oi a solution of
V[K, ], , f, u0] by employing the semi-discretisation method with
respect to t (c. Raviart [9]).

2. Main results. Let us denote by the set o all v e L(0, T; X)
such that v(t) e K(t) for a.a. t e (0, T). We say that the mapping t
K(t) (resp. t4x(t; .)) is right continuous at t--to, if for any sequence
{tn}, t $ to, the sequence {K(t)} (resp. {4(t ;.)}) converges to K(to)
(resp. (t0; .)) in X as nc in the sense of Mosco [7]. Now, suppose
that

(H. 1) the mappings t-.K(t) t](t;.) and t-4z(t; .) are right
continuous on [0, T];

(H. 2) if t is a point in [0, T] and z is an element of K(t) with
(t; z) c, then for each s e [t, T] there is e K(s) such that

](s; 2)--](t; z)<_LIt-s (l+llz]]),
(s; 2)-(t z)<_LIt-sl(l+llzll+l(t; z)l);

(H. 3) ](t; z)>_C Ilzll-M for all t e [0, T] and z e K(t);
(H. 4) there are an X*-valued continuous function bo on [0, T] and

a real-valued continuous function b on [0, T] such that
(t; z) >_ (bo(t), z)z + b(t) for all t e [0, T] and z e X;

(H. 5) there is an X-valued Lipschitz continuous function ho on
[0, T] with L as a Lipschitz constant such that ho(t) e K(t) for all t e [0, T]
and (. h0(.)) is bounded on [0, T]; where C,M,L are positive con-
stants and I" Ix denotes the norm in X.

Then we have
Theorem 1o Let u (i= 1, 2) be a solution of V[K, ], 4x, f, u0,].

Then the following holds:

Ilu(t) u(t)l lu(t) u(t)l 2(f--f u--u)xdt
dt

for any t, t2 e [0, T], t

_
t, where I1" IIH denotes the norm in H.

Theorem 2. Assume that f f’ e L’(O, T; X*), Uo e K(O) and
(0, Uo) c. Then there is a solution u of V[K, ], , f, u0] such that
u e L(O, T;X) (hence it is an X-valued weakly continuous function on
[0, T]) and (. u(.)) e L(O, T).

Remark. If, or a solution u, property (iii) is not required, then
assumptions on the t-dependence or mappings tK(t), t--.](t; .) and
t--.4z(t; .) may be weakened.

Remark. Theorem 2 has various applications to initial boundary
value problems or nonlinear time-dependent parabolic differential
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equations (see [4]).
3. Sketch of proof of Theorems. Theorem 1 can be easily

proved. We shall give below the outline of the proof of Theorem 2.
Let N be a positive integer and set --T/N and

f,=sT f(t)dt, n= 1, 2, N.
d(n-1)

Now, define a sequence {u,, u,)}:cXx as ollows Let u,0
----u0 and (u,,u)eXX*, n-l,2..., ,N, be a pair such that
u, e K(en), u, e ](n u,) and the ollowing holds"

* gN W)X(u.-u._, u.-w).+ (u.-f., .-(3.1)
g(sn w)--(sn u,) for all w e K(sn).

Note that by virtue of a result of Browder [3 Theorem 2], for n= 1, 2,
., N, there exists such a pair (u,, u,) e Xx X*.

Substituting ho(sn) for w in (3.1) and using hypotheses (H. 3),
(H. 4) and (H. 5) we obtain

Lemma 1. For some positive constant Mx independent of N, n we
have"

Next, by (H. 2), for each n- 1, 2, ., N, there is , e K(sn)
such that

(n; a,)-((n- 1) u,_)gsL(+ u,_
(sn; ,)--(s(n--1) u,_)

Taking, for w in (3.1) and making use o Lemma I we get
Lemma 2. There is a positive constant M independent of N, n

such that

and

max u, I[x

_
M,

ln<:h
max I+(,n; u,)l_<M2
l<n<N

N

1 E IluN,n-U,n-[l-M
Remark. In case K, ] and are independent of t, the estimates

in Lemmas 1 and 2 are due to Raviart [9].
We set u(t)=u,, u*(t)=u*, and P’u(t)=Tv(u,-u,_) i

t e I,=[e(n--1),n), n=1,2, ...,N. As was seen above, sequences
{u}, {u*} and {tTu} are bounded in L(0, T;X), L(O, T;X*)
and L(0, T; H), respectively. Therefore there are some subsequences
{u,}, {u*,}, {/7,u,} such that u,-u weakly* in L(0, T;X), u*,--u*
weakly* in L(0, T X*) and g,u,-v weakly in L(0, T H) as N’-c.
Then we can show that v--u’ and rom (H. 1) that u e j/and (. u(.))
e L(0, T). Also we see that u is an X-valued weakly continuous unc-
tion on [0, T] with u(0)=u0 and u*(t) e 3](t; u(t)) or a.a. t e (0, T). Thus
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u and u* have properties (i)(iv). Finally, by using the ollowing
lemma we can prove that (v) is ulfilled.

Lemma 3. For each v e L2(O,T H) such that (. ;v(.))
e LI(O, T), there exists a sequence {VN} in LP(O, T X) L2(O, T; H) such
that v(t) e K(sn) for t e IN,n (n= 1, 2, ., N), vv strongly both in
LP(O, T; X) and in L2(O, T; H) as N-c and (v)--.q(v) as N-c,
where

.(n-
(n; v(t))dt.(v)-- (t; v(t))dt and (VN)---
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