# 162. The Semi-discretisation Method and Nonlinear Time-dependent Parabolic Variational Inequalities 

By Nobuyuki Kenmochi<br>Department of Mathematics, Hiroshima University

(Comm. by Kôsaku Yosida, M. J. A., Nov. 12, 1974)

1. Introduction. Let $H$ be a (real) Hilbert space and $X$ be a reflexive Banach space such that $X \subset H, X$ is dense in $H$ and the natural injection from $X$ into $H$ is continuous. We denote by $X^{*}$ the dual space of $X$. Identifying $H$ with its dual, we have the relations: $X \subset H \subset X^{*}$. Throughout this paper, let $0<T<\infty, 1<p<\infty$ and $1 / p$ $+1 / p^{\prime}=1$. Let $K=\{K(t) ; 0 \leq t \leq T\}$ be a family of closed convex subsets of $X, \psi$ be a function on $[0, T] \times X$ such that for each $t \in[0, T]$, $\psi(t ; \cdot)$ is a lower semicontinuous convex function on $X$ with values in $(-\infty, \infty]$, and $j$ be a continuous function on $[0, T] \times X$ such that for each $t \in[0, T], j(t ; \cdot)$ is convex on $X$. Suppose further that $j$ is bounded on each bounded subset of $[0, T] \times X$ and for each $v \in L^{p}(0, T ; X)$, $t \rightarrow \psi(t ; v(t))$ is measurable. Then, for given $f \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$ and $u_{0} \in X$ we mean by $V\left[K, j, \psi, f, u_{0}\right]$ the following problem: Find $u \in L^{p}(0, T ; X)$ together with $u^{*} \in L^{p^{\prime}}\left(0, T ; X^{*}\right)$ such that
(i) $u$ is an $H$-valued continuous function on [ $0, T$ ] with $u(0)=u_{0}$;
(ii) $u(t) \in K(t)$ for a.a. (almost all) $t \in(0, T)$ and $\psi(\cdot ; u(\cdot)) \in L^{1}(0, T)$;
(iii) $u^{*}(t) \in \partial j(t ; u(t))$ for a.a. $t \in(0, T)$, where $\partial j(t ; \cdot)$ is the subdifferential of $j(t ; \cdot)$;
(iv) $u^{\prime}=(\mathrm{d} / \mathrm{d} t) u \in L^{2}(0, T ; H)$;
(v) $\int_{0}^{T}\left(u^{\prime}(t), u(t)-v(t)\right)_{H} \mathrm{~d} t+\int_{0}^{T}\left(u^{*}(t)-f(t), u(t)-v(t)\right)_{X} \mathrm{~d} t$ $\leq \int_{0}^{T}\{\psi(t ; v(t))-\psi(t ; u(t)\} d t$
for all $v \in L^{p}(0, T ; X) \cap L^{2}(0, T ; H)$ such that $v(t) \in K(t)$ for a.a. $t \in(0, T)$ and $\psi(\cdot ; v(\cdot)) \in L^{1}(0, T)$, where $(\cdot, \cdot)_{X}$ and $(\cdot, \cdot)_{H}$ stand for the natural pairing between $X^{*}$ and $X$ and the inner product in $H$, respectively.

Remark. If we take $\psi(t ; \cdot)+I_{K(t)}(\cdot)$ instead of $\psi(t ; \cdot)$ we can formulate the above problem without using $K(t)$, where $I_{K_{(t)}}$ is the indicator function of $K(t)$.

Many results on the existence, uniqueness and regularity of solutions of this kind of problems have been established by many authors (e.g., [1], [2], [4]-[6], [8]-[11]). Brézis [2] and Moreau [6] treated the case where $\psi(t ; \cdot)$ is the indicator function of $K(t)$; in this case, the domain
$D(\partial \psi(t ; \cdot))$ of $\partial \psi(t ; \cdot)$ depends on $t$, since $K(t)=D(\partial \psi(t ; \cdot))$. Watanabe [11] dealt with the case where $D(\partial \psi(t ; \cdot))$ depends on $t$ but $\{z ; \psi(t ; z)<\infty\}$ does not depend on $t$. Also, a result of Péralba [8] is interesting. Their method, except Moreau's one, is based on the nonlinear semigroup theory. In this paper, we shall show the existence of a solution of $V\left[K, j, \psi, f, u_{0}\right]$ by employing the semi-discretisation method with respect to $t$ (cf. Raviart [9]).
2. Main results. Let us denote by $\mathcal{K}$ the set of all $v \in L^{p}(0, T ; X)$ such that $v(t) \in K(t)$ for a.a. $t \in(0, T)$. We say that the mapping $t$ $\rightarrow K(t)$ (resp. $t \rightarrow \psi(t ; \cdot)$ ) is right continuous at $t=t_{0}$, if for any sequence $\left\{t_{n}\right\}, t_{n} \downarrow t_{0}$, the sequence $\left\{K\left(t_{n}\right)\right\}$ (resp. $\left\{\psi\left(t_{n} ; \cdot\right)\right\}$ ) converges to $K\left(t_{0}\right)$ (resp. $\psi\left(t_{0} ; \cdot\right)$ ) in $X$ as $n \rightarrow \infty$ in the sense of Mosco [7]. Now, suppose that
(H. 1) the mappings $t \rightarrow K(t) t \rightarrow j(t ; \cdot)$ and $t \rightarrow \psi(t ; \cdot)$ are right continuous on $[0, T]$;
(H. 2) if $t$ is a point in [0,T] and $z$ is an element of $K(t)$ with $\psi(t ; z)<\infty$, then for each $s \in[t, T]$ there is $\tilde{z} \in K(s)$ such that
$\|\tilde{z}-z\|_{X} \leq L|t-s|$,
$j(s ; \tilde{z})-j(t ; z) \leq L|t-s|\left(1+\|z\|_{X}^{p}\right)$,
$\psi(s ; \tilde{z})-\psi(t ; z) \leq L|t-s|\left(1+\|z\|_{X}^{p}+|\psi(t ; z)|\right) ;$
(H. 3) $\quad j(t ; z) \geq C\|z\|_{X}^{p}-M$ for all $t \in[0, T]$ and $z \in K(t)$;
(H. 4) there are an $X^{*}$-valued continuous function $b_{0}$ on $[0, T]$ and a real-valued continuous function $b_{1}$ on $[0, T]$ such that

$$
\psi(t ; z) \geq\left(b_{0}(t), z\right)_{X}+b_{1}(t) \quad \text { for all } t \in[0, T] \text { and } z \in X ;
$$

(H. 5) there is an $X$-valued Lipschitz continuous function $h_{0}$ on $[0, T]$ with L as a Lipschitz constant such that $h_{0}(t) \in K(t)$ for all $t \in[0, T]$ and $\psi\left(\cdot ; h_{0}(\cdot)\right)$ is bounded on $[0, T]$; where $C, M, L$ are positive constants and $\|\cdot\|_{X}$ denotes the norm in $X$.

Then we have
Theorem 1. Let $u_{i}(i=1,2)$ be a solution of $V\left[K, j, \psi, f_{i}, u_{0, i}\right]$. Then the following holds:

$$
\left\|u_{1}\left(t_{1}\right)-u_{2}\left(t_{1}\right)\right\|_{H}^{2}-\left\|u_{1}\left(t_{2}\right)-u_{2}\left(t_{2}\right)\right\|_{H}^{2} \leq \int_{t_{2}}^{t_{1}} 2\left(f_{1}-f_{2}, u_{1}-u_{2}\right)_{X} \mathrm{~d} t
$$

for any $t_{1}, t_{2} \in[0, T], t_{1} \geq t_{2}$, where $\|\cdot\|_{H}$ denotes the norm in $H$.
Theorem 2. Assume that $f, f^{\prime} \in L^{p^{\prime}}\left(0, T ; X^{*}\right), u_{0} \in K(0)$ and $\psi\left(0, u_{0}\right)<\infty$. Then there is a solution $u$ of $V\left[K, j, \psi, f, u_{0}\right]$ such that $u \in L^{\infty}(0, T ; X)$ (hence it is an $X$-valued weakly continuous function on $[0, T])$ and $\psi(\cdot ; u(\cdot)) \in L^{\infty}(0, T)$.

Remark. If, for a solution $u$, property (iii) is not required, then assumptions on the $t$-dependence for mappings $t \rightarrow K(t), t \rightarrow j(t ; \cdot)$ and $t \rightarrow \psi(t ; \cdot)$ may be weakened.

Remark. Theorem 2 has various applications to initial boundary value problems for nonlinear time-dependent parabolic differential
equations (see [4]).
3. Sketch of proof of Theorems. Theorem 1 can be easily proved. We shall give below the outline of the proof of Theorem 2.

Let $N$ be a positive integer and set $\varepsilon_{N}=T / N$ and

$$
f_{N, n}=\varepsilon_{N}^{-1} \int_{\varepsilon_{N}(n-1)}^{\varepsilon_{N} n} f(t) \mathrm{d} t, \quad n=1,2, \cdots, N .
$$

Now, define a sequence $\left.\left\{u_{N, n}, u_{N, n}^{*}\right)\right\}_{n=1}^{N} \subset X \times X^{*}$ as follows: Let $u_{N, 0}$ $=u_{0}$ and $\left(u_{N, n}, u_{N, n}^{*}\right) \in X \times X^{*}, n=1,2, \cdots, N$, be a pair such that $u_{N, n} \in K\left(\varepsilon_{N} n\right), u_{N, n}^{*} \in \partial j\left(\varepsilon_{N} n ; u_{N, n}\right)$ and the following holds:

$$
\left\{\begin{array}{c}
\varepsilon_{N}^{-1}\left(u_{N, n}-u_{N, n-1}, u_{N, n}-w\right)_{H}+\left(u_{N, n}^{*}-f_{N, n}, u_{N, n}-w\right)_{X}  \tag{3.1}\\
\quad \leq \psi\left(\varepsilon_{N} n ; w\right)-\psi\left(\varepsilon_{N} n ; u_{N, n}\right) \quad \text { for all } w \in K\left(\varepsilon_{N} n\right) .
\end{array}\right.
$$

Note that by virtue of a result of Browder [3; Theorem 2], for $n=1,2$, $\cdots, N$, there exists such a pair $\left(u_{N, n}, u_{N, n}^{*}\right) \in X \times X^{*}$.

Substituting $h_{0}\left(\varepsilon_{N} n\right)$ for $w$ in (3.1) and using hypotheses (H. 3), (H. 4) and (H. 5) we obtain

Lemma 1. For some positive constant $M_{1}$ independent of $N, n$ we have:

$$
\varepsilon_{N} \sum_{n=1}^{N}\left\|u_{N, n}\right\|_{X}^{p} \leq M_{1}, \quad \varepsilon_{N} \sum_{n=1}^{N}\left|\psi\left(\varepsilon_{N} n ; u_{N, n}\right)\right| \leq M_{1} .
$$

Next, by (H. 2), for each $n=1,2, \cdots, N$, there is $\tilde{u}_{N, n} \in K\left(\varepsilon_{N} n\right)$ such that

$$
\begin{gathered}
\left\|u_{N, n-1}-\tilde{u}_{N, n}\right\|_{X} \leq \varepsilon_{N} L, \\
j\left(\varepsilon_{N} n ; \tilde{u}_{N, n}\right)-j\left(\varepsilon_{N}(n-1) ; u_{N, n-1}\right) \leq \varepsilon_{N} L\left(1+\left\|u_{N, n-1}\right\|_{X}^{p}\right), \\
\psi\left(\varepsilon_{N} n ; \tilde{u}_{N, n}\right)-\psi\left(\varepsilon_{N}(n-1) ; u_{N, n-1}\right) \\
\quad \leq \varepsilon_{N} L\left(1+\left\|u_{N, n-1}\right\|_{X}^{p}+\left|\psi\left(\varepsilon_{N}(n-1) ; u_{N, n-1}\right)\right|\right) .
\end{gathered}
$$

Taking $\tilde{u}_{N, n}$ for $w$ in (3.1) and making use of Lemma 1 we get
Lemma 2. There is a positive constant $M_{2}$ independent of $N, n$ such that

$$
\max _{1 \leq n \leq N}\left\|u_{N, n}\right\|_{X}^{p} \leq M_{2}, \quad \max _{1 \leq n \leq N}\left|\psi\left(\varepsilon_{N} n ; u_{N, n}\right)\right| \leq M_{2}
$$

and

$$
\varepsilon_{N}^{-1} \sum_{k=1}^{N}\left\|u_{N, n}-u_{N, n-1}\right\|_{H}^{2} \leq M_{2} .
$$

Remark. In case $K, j$ and $\psi$ are independent of $t$, the estimates in Lemmas 1 and 2 are due to Raviart [9].

We set $u_{N}(t)=u_{N, n}, u_{N}^{*}(t)=u_{N, n}^{*}$ and $\nabla_{N} u_{N}(t)=\varepsilon_{N}^{-1}\left(u_{N, n}-u_{N, n-1}\right)$ if $t \in I_{N, n}=\left[\varepsilon_{N}(n-1), \varepsilon_{N} n\right), n=1,2, \cdots, N$. As was seen above, sequences $\left\{u_{N}\right\}_{N \geq 1},\left\{u_{N}^{*}\right\}_{N \geq 1}$ and $\left\{\nabla_{N} u_{N}\right\}_{N \geq 1}$ are bounded in $L^{\infty}(0, T ; X), L^{\infty}\left(0, T ; X^{*}\right)$ and $L^{2}(0, T ; H)$, respectively. Therefore there are some subsequences $\left\{u_{N^{\prime}}\right\},\left\{u_{N^{\prime}}^{*}\right\},\left\{V_{N^{\prime}}, u_{N^{\prime}}\right\}$ such that $u_{N^{\prime}} \rightarrow u$ weakly* in $L^{\infty}(0, T ; X), u_{N^{\prime}}^{*} \rightarrow u^{*}$ weakly* in $L^{\infty}\left(0, T ; X^{*}\right)$ and $\nabla_{N}, u_{N^{\prime}} \rightarrow v$ weakly in $L^{2}(0, T ; H)$ as $N^{\prime} \rightarrow \infty$. Then we can show that $v=u^{\prime}$ and from (H.1) that $u \in \mathcal{K}$ and $\psi(\cdot ; u(\cdot))$ $\in L^{\infty}(0, T)$. Also we see that $u$ is an $X$-valued weakly continuous function on [0, T] with $u(0)=u_{0}$ and $u^{*}(t) \in \partial j(t ; u(t))$ for a.a. $t \in(0, T)$. Thus
$u$ and $u^{*}$ have properties (i)~(iv). Finally, by using the following lemma we can prove that (v) is fulfilled.

Lemma 3. For each $v \in \mathcal{K} \cap L^{2}(0, T ; H)$ such that $\psi(\cdot ; v(\cdot))$ $\in L^{1}(0, T)$, there exists a sequence $\left\{v_{N}\right\}$ in $L^{p}(0, T ; X) \cap L^{2}(0, T ; H)$ such that $v_{N}(t) \in K\left(\varepsilon_{N} n\right)$ for $t \in I_{N, n}(n=1,2, \cdots, N), v_{N} \rightarrow v$ strongly both in $L^{p}(0, T ; X)$ and in $L^{2}(0, T ; H)$ as $N \rightarrow \infty$ and $\Phi_{N}\left(v_{N}\right) \rightarrow \Phi(v)$ as $N \rightarrow \infty$, where

$$
\Phi(v)=\int_{0}^{T} \psi(t ; v(t)) \mathrm{d} t \quad \text { and } \quad \Phi_{N}\left(v_{N}\right)=\sum_{n=1}^{N} \int_{\varepsilon_{N}(n-1)}^{\varepsilon_{N} n} \psi\left(\varepsilon_{N} n ; v_{N}(t)\right) \mathrm{d} t .
$$

## References

[1] H. Brézis: Problèmes unilatéraux. J. Math. Pures Appl., 51, 1-168 (1972).
[2] -: Un problème d'évolution avec contraintes unilatérales dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 274, A310-A312 (1972).
[3] F. E. Browder: Nonlinear variational inequalities and maximal monotone mappings in Banach spaces. Math Ann., 183, 213-231 (1969).
[4] N. Kenmochi: Some nonlinear parabolic variational inequalities and applications (in preparation).
[5] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969).
[6] J. J. Moreau: Problème d'évolution associé à un convexe mobile d'un espace hilbertien. C. R. Acad. Sci. Paris Sér. A-B, 276, A791-A794 (1973).
[7] U. Mosco: Convergence of convex sets and of solutions of variational inequalities. Advances in Math., 3, 510-585 (1969).
[8] J. C. Péralba: Un problème d'évolution relatif à un opérateur sous-différential dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 275, A93A96 (1972).
[9] J. P. Raviart: Sur la résolution de certaines équations paraboliques non linéaires. J. Functional Analysis, 5, 299-328 (1970).
[10] B. A. Ton: On nonlinear parabolic variational inequalities. Indiana Univ. Math. J., 22, 327-337 (1972).
[11] J. Watanabe: On certain nonlinear evolution equations. J. Math. Soc. Japan, 25, 446-463 (1973).

