191. A Note on the Normal Subgroups of 4-fold Transitive Permutation Groups of Degree 5m+4

By Tsuyoshi ATSUMI Kagoshima University

(Comm. by Kenjiro SHODA, M. J. A., Dec. 12, 1974)

1. Introduction. The following is the well-known theorem of Jordan ([8], p. 65).

Theorem (Jordan). Let G be a k-transitive permutation group on a set $\Omega, k \ge 2$, and G be not the symmetric group on Ω . If $H \ne 1$ is a normal subgroup of G, then H is (k-1)-transitive on Ω with the exception when $|\Omega|$ is a power of 2 and k=3, and in this exceptional case H may be an elementary abelian 2-group transitive and regular on Ω .

This theorem is refined by A. Wagner [7], N. Ito [4], M. Aschbacher [1], J. Saxl [6], and E. Bannai [2]. In this note we shall prove the following:

Theorem.¹⁾ Let G be a 4-fold transitive permutation group on a set Ω , where $|\Omega| = 5m + 4$ (m: integer) and greater than 5. If $H \neq 1$ is a normal subgroup of G, then H is also 4-fold transitive on Ω .

2. Proof of the theorem. In order to prove the theorem we need the following:

Lemma. Let G be a t-fold transitive permutation group on a set Ω for $t \ge 4$ and let $H \ne 1$ be a normal subgroup of G. Then for all $\Delta \subseteq \Omega$ with $|\Delta| = t$, $H_{(\Delta)}^4 = S_t$.

Proof. We omit the proof of the lemma. (See [3].)

Now we start with the proof of the theorem. Suppose $|\Omega| = 5m + 4$ be the minimal degree >5 such that there is a counterexample to the theorem. Let G be a 4-fold transitive group on Ω of degree 5m + 4containing a non-trivial normal subgroup H which is 3-fold transitive but not 4-fold transitive on Ω . Let α , β , $\gamma \in \Omega$ and let $\Gamma_1, \dots, \Gamma_k$ be the $H_{\alpha\beta\gamma}$ -orbits on Ω -{ α, β, γ }. Then by assumption $k \ge 2$, $|\Gamma_1| = \dots = |\Gamma_k|$ and $|\Gamma_1|$ is not divisible by 5. At first we shall show that there exists a non-trivial 5-element in H fixing at least 4 points of Ω . By the lemma above and a result of Wagner ([7], Lemma 4), $|\Gamma_1|$ must be even. Let $\delta \in \Gamma_1$ and let T be a Sylow 2-subgroup of $H_{\alpha\beta\gamma\delta}$. Then $T \neq 1$ by Theorem 2 of J. King [5]. Now if $T^{\varrho} \subseteq G_{\alpha\beta\gamma\delta}$ for some $g \in G$ then $T^{\varrho} \subseteq G_{\alpha\beta\gamma\delta}$ $\cap H = H_{\alpha\beta\gamma\delta}$ and hence there is an element h of $H_{\alpha\beta\gamma\delta}$ such that $T^{\varrho} = T^h$. Thus by a well-known lemma of Witt $N_G(T)^{fxT}$ is 4-fold transitive.

¹⁾ I was informed that the same result was obtained also by E. Bannai (University of Tokyo) independently.

Since $|\Gamma_1| = |H_{\alpha\beta\gamma}: H_{\alpha\beta\gamma\delta}|$ is even, $N_H(T)^{fix T} \neq 1$. Then $N_H(T)^{fix T}$ is 3fold transitive by the theorem of Jordan, and using again the above mentioned theorem of King we see that |fx T| is 5, 7 or 11 and $N_H(T)^{fix T}$ is S_{δ}, A_{γ} or M_{11} . So $5||N_H(T)^{fix T}|$. Hence there is an element $y \in H$ which is of order 5. Since $|\Omega| = 5m + 4$, y fixes at least 4 points of Ω and hence 5 divides $|H_{\alpha\beta\gamma\delta}|$. Let Q be a Sylow 5-subgroup of $H_{\alpha\beta\gamma\delta}$. Then by the same reason as for T the above $N_G(Q)^{fix Q}$ is 4-fold transitive. Since $|\Gamma_1|$ is not divisible by 5, Q is a Sylow 5-subgroup of $H_{\alpha\beta\gamma}$ and hence by a lemma of Witt $N_H(Q)^{fix Q}$ is 3-fold transitive, in particular $N_H(Q)^{fix Q} \neq 1$. Clearly |fx Q| = 5a + 4 (a: integer) and 5a + 4 < 5m + 4. Since $N_H(Q)^{fix Q} \triangleleft N_G(Q)^{fix Q}, N_H(Q)^{fix Q}$ is either 4-fold transitive on fix Q or 3-fold transitive on fix Q with |fx Q| = 4. In either case we get the following: $fix Q - \{\alpha, \beta, \gamma\} \subseteq \Gamma_1$. Thus Q has no fixed point on Γ_2 . Hence 5 divides $|\Gamma_2| = |\Gamma_1|$, which is a contradiction. Thus we complete the proof of the theorem.

Acknowledgment. The author would like to express his thanks to Prof. H. Nagao and Dr. E. Bannai for their kind advice.

References

- [1] M. Aschbacher: On doubly transitive permutation groups of degree $n \equiv 2 \mod 4$. Illinois J. Math., 16, 276-279 (1972).
- [2] E. Bannai: Normal subgroups of finite multiply transitive permutation groups. Nagoya Math. J., 53, 103-107 (1974).
- [3] ——: A note on characters of normal subgroups of multiply transitive permutation groups. J. Fac. Sci. Univ. Tokyo, 20, 373-376 (1973).
- [4] N. Ito: Normal subgroups of quadruply transitive permutation groups. Hokkaido Math. J., 1, 1-6 (1972).
- [5] J. King: Doubly transitive groups in which involutions fix one or three points. Math. Z., 111, 311-321 (1969).
- [6] J. Saxl: Multiply Transitive Permutation Groups. Thesis, University of Oxford (1973).
- [7] A. Wagner: Normal subgroups of triply transitive permutation groups of odd degree. Math. Z., 94, 219-222 (1966).
- [8] H. Wielandt: Finite Permutation Groups. Academic Press (1964).