191. A Note on the Normal Subgroups of 4-fold Transitive Permutation Groups of Degree $5 m+4$

By Tsuyoshi Atsumi
Kagoshima University
(Comm. by Kenjiro Shoda, m. J. A., Dec. 12, 1974)

1. Introduction. The following is the well-known theorem of Jordan ([8], p. 65).

Theorem (Jordan). Let G be a k-transitive permutation group on a set $\Omega, k \geqq 2$, and G be not the symmetric group on Ω. If $H \neq 1$ is a normal subgroup of G, then H is $(k-1)$-transitive on Ω with the exception when $|\Omega|$ is a power of 2 and $k=3$, and in this exceptional case H may be an elementary abelian 2-group transitive and regular on Ω.

This theorem is refined by A. Wagner [7], N. Ito [4], M. Aschbacher [1], J. Saxl [6], and E. Bannai [2]. In this note we shall prove the following:

Theorem. ${ }^{1)} \quad$ Let G be a 4-fold transitive permutation group on a set Ω, where $|\Omega|=5 m+4$ (m : integer) and greater than 5 . If $H \neq 1$ is a normal subgroup of G, then H is also 4-fold transitive on Ω.
2. Proof of the theorem. In order to prove the theorem we need the following :

Lemma. Let G be a t-fold transitive permutation group on a set Ω for $t \geqq 4$ and let $H \neq 1$ be a normal subgroup of G. Then for all $\Delta \subseteq \Omega$ with $|\Delta|=t, H_{(\Delta)}^{4}=S_{t}$.

Proof. We omit the proof of the lemma. (See [3].)
Now we start with the proof of the theorem. Suppose $|\Omega|=5 m+4$ be the minimal degree >5 such that there is a counterexample to the theorem. Let G be a 4 -fold transitive group on Ω of degree $5 m+4$ containing a non-trivial normal subgroup H which is 3 -fold transitive but not 4-fold transitive on Ω. Let $\alpha, \beta, \gamma \in \Omega$ and let $\Gamma_{1}, \cdots, \Gamma_{k}$ be the $H_{\alpha \beta \gamma}$-orbits on Ω - $\{\alpha, \beta, \gamma\}$. Then by assumption $k \geqq 2,\left|\Gamma_{1}\right|=\cdots=\left|\Gamma_{k}\right|$ and $\left|\Gamma_{1}\right|$ is not divisible by 5 . At first we shall show that there exists a non-trivial 5 -element in H fixing at least 4 points of Ω. By the lemma above and a result of Wagner ([7], Lemma 4), $\left|\Gamma_{1}\right|$ must be even. Let $\delta \in \Gamma_{1}$ and let T be a Sylow 2-subgroup of $H_{\alpha \beta r o}$. Then $T \neq 1$ by Theorem 2 of J. King [5]. Now if $T^{g} \subseteq G_{\alpha \beta \gamma \delta}$ for some $g \in G$ then $T^{g} \subseteq G_{\alpha \beta \gamma \delta}$ $\cap H=H_{\alpha \beta \gamma \delta}$ and hence there is an element h of $H_{\alpha \beta \gamma \delta}$ such that $T^{g}=T^{h}$. Thus by a well-known lemma of Witt $N_{G}(T)^{f i x T}$ is 4 -fold transitive.

[^0]Since $\left|\Gamma_{1}\right|=\left|H_{\alpha \beta \gamma}: H_{\alpha \beta r o}\right|$ is even, $N_{H}(T)^{f i x T} \neq 1$. Then $N_{H}(T)^{f i x T}$ is $3-$ fold transitive by the theorem of Jordan, and using again the above mentioned theorem of King we see that $|f i x T|$ is 5,7 or 11 and $N_{H}(T)^{f i x} T$ is S_{5}, A_{7} or M_{11}. So $5 \| N_{H}(T)^{f i x}{ }^{T} \mid$. Hence there is an element $y \in H$ which is of order 5. Since $|\Omega|=5 m+4, y$ fixes at least 4 points of Ω and hence 5 divides $\left|H_{\alpha \beta \gamma \delta}\right|$. Let Q be a Sylow 5 -subgroup of $H_{\alpha \beta \gamma \delta}$. Then by the same reason as for T the above $N_{G}(Q)^{f i x Q}$ is 4 -fold transitive. Since $\left|\Gamma_{1}\right|$ is not divisible by $5, Q$ is a Sylow 5-subgroup of $H_{\alpha \beta \gamma}$ and hence by a lemma of Witt $N_{H}(Q)^{f i x Q}$ is 3-fold transitive, in particular $N_{H}(Q)^{f i x} Q \neq 1$. Clearly \mid fix $Q \mid=5 a+4$ (a : integer) and $5 a+4<5 m+4$. Since $N_{H}(Q)^{f i x Q} \triangleleft N_{G}(Q)^{f i x Q}, N_{H}(Q)^{f i x Q}$ is either 4-fold transitive on fix Q or 3 -fold transitive on fix Q with $|f i x Q|=4$. In either case we get the following: fix $Q-\{\alpha, \beta, \gamma\} \subseteq \Gamma_{1}$. Thus Q has no fixed point on Γ_{2}. Hence 5 divides $\left|\Gamma_{2}\right|=\left|\Gamma_{1}\right|$, which is a contradiction. Thus we complete the proof of the theorem.

Acknowledgment. The author would like to express his thanks to Prof. H. Nagao and Dr. E. Bannai for their kind advice.

References

[1] M. Aschbacher: On doubly transitive permutation groups of degree $n \equiv 2$ $\bmod 4$. Illinois J. Math., 16, 276-279 (1972).
[2] E. Bannai: Normal subgroups of finite multiply transitive permutation groups. Nagoya Math. J., 53, 103-107 (1974).
[3] -: A note on characters of normal subgroups of multiply transitive permutation groups. J. Fac. Sci. Univ. Tokyo, 20, 373-376 (1973).
[4] N. Ito: Normal subgroups of quadruply transitive permutation groups. Hokkaido Math. J., 1, 1-6 (1972).
[5] J. King: Doubly transitive groups in which involutions fix one or three points. Math. Z., 111, 311-321 (1969).
[6] J. Saxl: Multiply Transitive Permutation Groups. Thesis, University of Oxford (1973).
[7] A. Wagner: Normal subgroups of triply transitive permutation groups of odd degree. Math. Z., 94, 219-222 (1966).
[8] H. Wielandt: Finite Permutation Groups. Academic Press (1964).

[^0]: 1) I was informed that the same result was obtained also by E. Bannai (University of Tokyo) independently.
