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1. Introduction and notations. The well known Farey sequence
of order s on [0, 1] is in reality an ordered list of all zeros of linear
polynomials ax- b with integral coefficients satisfying 0_<_ b a_<_ s.
The quadratic Farey sequence of order s is defined as ordered list
all the real roots of the equation ax2+bx+v--O, which O_<a<=s,
0:/:lc]gs. Recently, H. Brown and K. Mahler study the quadratic
Farey sequence on [0, 1], and give some data via the computer [l].
In this paper, we give a formula to Table II, [1], i.e. the value of the
determinant formed by the coefficients of three consecutive quadratics
at certain rational points.

In this paper itallic letters and letters with a suffix or sign, r*,
etc. denote all integers except x, y. The symbol [q/p] denotes the inte-
gral part of q/p; that is, the integer such that [q/p]<__q/p[q/p]+l.
Put

Ls--((a, k, 1) s>=a>=O, O:/:llls,
N+ --{(1 k)" nl--mk-r Ol<s, Ikl<s)s,r

NT,r--((1, k)" nl--mk--r, O>l>=--s, Ikl<=s}
d(a, r, k, l) d/,(a, r, k, l) (m/n, m/n) the point which (1)

y l/(ax / k) intersects with (2) y--= x I, where * denotes the length of a
vector .. Now we denote an order to the set M,, where M,=N:, or

N[,r. If M,:/:O, (1, k)<(l’, k’)l/l<l/’l and (1, k)-(l’, k’)l=l’. Here we
call (1, k) or maximum in M, when the value Ill is maximum among
the element (1, k) e M,.

In order to obtain the results, we consider fractional functions (1)
y- l/(ax / k) for (a, k, l) e L and the equation (2) y- x. Then, the set
M of all the positive points on [0, 1] which (1) is intersecting with (2)
gives the quadratic Farey sequence of order s. The necessary and
sufficient condition that (1)throws the point (m/n,m/n) is a=-nr/m,
where r=nl-mk, but a-nr/m is not necessary integral number, so,
we must find the fractional function (1) with integral coefficients throw-
ing the nearest point to (m/n, m/n). That is, it is reduced to find two
elements (a, k, l) e L, such that d(a, r, k, l)0 is minimum and d(a, r, k, l)

0 is maximum. Here we call the equation giving this nearest point
smaller (larger) than m/n lower (upper) best approximating equation
with respect to m/n. Our results are given as Theorems 1-3.
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2. Results. Theorem 1. m>=2, (n,m)=l (t=--1,1)
Let rt be maximum integers satisfying nrt=_t(m), (nrt--t)/m<__s, and
let (lt kt) be maximum in N+ Then, 1) the upper best approximatings, rt"

primitive equation is (3) ((nr-- 1)/m)x + kx--l=0, and the lower best
approximating primitive equation is (4) ((nr_ + 1)/m)x+ k_x-l_=O.
2) the value L of the determinant of the matrix of the coefficient of the
equation (3), nx-m=O, and (4) is L=-(r+r_)/m.

Corollary. (t- 1, 1)
1) if ([s/n]-l)m2rt[s/n]m, then L-1-2[s/n]
2) if ([s/n] 1)m min (r, r_l) [s/n]m max (rl, r_) ([s/n]

+ 1)m, then L 2[s/n]
3) if [s/n]mrt, then L:-l-2[s/n]
4) the value L is always negative.
Theorem 2.
1) if m: 1, then L: --{[(s + 1) / n] + [(s-- 1) / n]}
2) if m n, then L- 2s
Theorem 3. n_>3

The absolute values of L are symmetric with respect to rational member
1/2.

Theorem 1 is easily obtained rom the ollowing main lemma
and the lemma.

Main lemma. Let the condition of Theorem 1 hold. Then,
1) N/ =/:, ((nr--t)/m)=/=O. 2) min,,>o d(a, r, k, l) d((nr_ + 1)/m8’t

r_, k_, l_), mx,<o d(a, r, k, 1)=d((nr+--l)/m, r, k, l).
Lemma. (t-- 1, 1)
1) Equations ((nrt--t)/m)x+ktx--[t--O are primitive.
2) The above equations don’t have rationa roots.
In the next 3, we give only the sketch of the proof of the main

lemma. Because the method o the proof is all elementary, and it
needs many pages or the proof. And the proo of the lemma and
Theorem 3 is easily obtained, and the proof o the corollary is also, not-
ing ([s/n]-l)mrt([s/m]+ 1)m, and r +r_--O(m).

3. The sketch of the proof of the main lemma. The results
of the part I o the main lemma are clear. The proof of the part II
takes the ollowing steps.

Step I. The element r o the set {r’ r=nl-mk, where 0:/:l ls,
kl<=s} takes positive value, negative value or zero. But we believe
that we may restrict ourselves to r_>_0. Since, if r<O, nr--p(m), then
there exists (a* r* k* /*)eL, such that Od(a* r* k* l*) < d(a, r, k, 1)
if l0, or Od(a*,r*,k*,l*)>=d(a,r,k,l) if lO. Where k*=-k,
l*---1, a* =rain ((n(-r)-(m-p))/m, s), r*=-r0.

Step II. When Onr/m<=s+l, r=nl-mk, rt>O, (t=-1,1)
nr =_ p(m), N+,=/:, (l*, k*) maximum in N/
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Then, 1) r <__pr, l* <=pl* (p=1,2,...,m)
2) rg(m--p)r_, l*<=(m-p)l*_ (p=0,1,..., m--l) similarly,

when Ir--rl<m if r>__m, 0<r<m if O<__r<m, NT,=/=, (l*, k*)
maximum in NT,.
Then, 1’) r<__(m--p)r_, (-l*)<__(m--p)l* (p-0, 1, ..., m--l)

< * (p=l 2, m2).2’)r<__pr, ( l*)=pl_
Here, we consider the value of the fractional equation (1)y=l/(ax+ k)
for x=m/n and the value of x for y=m/n. Then, we obtain from (1),

y(a, k, 1)-y,/n(a, k, 1)-nl/ (nk+ am),

1)=r/am or a:/:0x(a, lc, l)--Xm/n(a, ,
c for a=O.

Roughly speaking, to find min d(a, r, k, l)> 0 (Max d(a, r, k, l) 0) is
reduced to find the maximum (minimum) value y(a, k, l) smaller (larger)
than m/n and the maximum (minimum) value x(a, k, l) smaller (larger)
than m/n. So, in this estimation, we use the above inequalities 1,2,
1’, 2’. For example, y((nr--p)/m, k*, l*)-y((nr p)/m, k*, l*)
nml* / (nl* --p)--nml* / (nl*- 1)-nm(pl* --l*) / (nl* -p)(nl* 1) __> 0 by
enequality (1). Thus we find min d(a, r, k, l) 0 (max d(a, r, k, l) 0) is
obtained by a=(nr; + 1)/m(a=(nr-l)/m), k=k*(=k*), l=l*_(-l*).

Step III. Let nrt =_ t(m) (lt, kt) maximum in N/ and r* 0 maxi-s,rt

mum integer such that (nr*t t) /m <= s, nr*t =- t(m), (l*, k’t) maximum in

Nr, 0< rt < rt* (t- 1, 1). Then y((nrl 1) /m, k, ll) >= y((nr* 1) /m,
k* l*)>=m/n, x((nr--l)/m, k, l)>=x((nr*--l)/m, k*, l*) >m/hand m/n

k_l,/-’1) > y((nr_ + 1) /m, k_,l_,), m/n> x((nr*_ + 1) /m2,>y((nr* + 1) /m, *
k_, /*1) > x((nr_ + 1)/m, k_, /_). By Step II, if 0 < nr/m s,
rain d(a, r, k 1)O (max d(a, r, k 1)O) is obtained when r=r* (r=r*)

Step IV. We find easily that i nr/m2>=s, 0, we obtained that
d(s, r, , ) >= d((nr* 1) /m, r*, k*, *) O, where r* 0 maximum integer
such hat O<(nr*-l)/m<=s, nr*--l(m), and i nr/m>=s, <0, then
d(s, r, t, l)I>=[ d((nrt- t) /m, rt, kt*, l*)I.

Thus, the main lemma holds.
Example. To find the upper (lower) best approximating equation

with respect to 2/5.
1. In the case of order s-5
r_=3 is maximum integer satisfying (5r+ 1)/4=<5, 5r----1 (4)
r+=l is maximum integer satisfying (5r-1)/4=<5, 5r--1 (4)

so L=--((r +r_)/4)=-1 by Theorem 1,
and

+(/_,k_*)--(1 1) is maximum in N._,={(1, k)" 3-5/-2k 0/=<5,

(/+*,, k+*,) (1, 2) is maximum in N+.+,-{(1, k) 1=51-2k, 0</__<5,
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SO

(nr_ + 1) /m=4, (nr+-- 1) /m= 1,

4x + x-- 1 0 (lower)
x + 2x- 1 0 (upper)

2. In the case o order s=6
r_,=3 is maximum integer satisfying (5r_+1)/46, 5r__=-1 (4)
r+=5 is maximum integer satisfying (5r+--1)/46, 5r+,--1 (4)
0<r_<4<r+<8

by corollary, so L 2
and

$ +(l_,, k_*)=(3, 6) is maximum in
(l+, k+*,)=(3, 5) is maximum in

8O

4x +6x-3 0 (lower)
6x + 5x-3 0 (upper).
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