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1. Introduction. If we intend to treat the Cauchy problem for

the Hamilton-Jacobi equation

u;+ f(grad u) =0, xzeR"*, t>0,

(grad u= (s, - - +, Uy,)

from the point of view of the theory of semigroups of nonlinear trans-
formations, it is necessary ([1]) to establish the existence and uniqueness
of certain bounded (possibly generalized) solutions of the associated
equation
(AE) u+ f(grad u)=h(x), x e R”,
for given h. In this note we shall consider a more general equation
of the form
(E) F(x,u, grad u)=0, x e R",
and prove a uniqueness theorem for certain bounded generalized
(Lipschitz-continuous) solutions of (E). A semigroup treatment of the
Hamilton-Jacobi equation in several space variables will be taken up
in a later paper.

2. Definition of a generalized solution. We shall assume that
the function F(x, u, p) in (E) is real-valued and of class C* with respect
to all its arguments in R% X R}, X R% and satisfies the following three
conditions:

i) Thematrix (F;;(x,u, p)), where F';;=0d"F [9p,dp; (¢, j=1, - - -, n),
is nonnegative, i.e.,

i;l Fij(xa U, 10)311120

for each (¥, u,p) € R% X R, X R and each real 4,, - - -, 4, ;

ii) There exists a positive constant ¢ such that

F(z,u,p)>c

for all (x,u,p) € Ry X R}, X Ry

iii) The partial derivatives F,,,F, ., F,,, and F,,,, (i=1,...,7n)
are bounded in any subdomain
(1) D={(@,u,p); x e R", |u|<U, |p|<P},
where U and P are arbitrary constants.

Under the assumption i), we shall give the following definition (cf.

[3], [4D.
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Definition. A bounded and uniformly Lipschitz-continuous funec-
tion u: R*—R! that satisfies (E) at almost all points of R” is called a
bounded generalized solution of (E) if it satisfies the following semi-
concavity condition :

(80) w@+y)+u@—y)—2u@)<klyf, =x,yekR"
for some constant k.

3. Uniqueness. Our aim is to prove the

Theorem (Uniqueness). Under Assumptions i)-iii), there exists
at most one bounded generalized solution of (E).

As is easily seen, there are, in general, infinitely many bounded,
Lipschitz-continuous functions that satisfy (E) at almost all points of
R*. In fact, this failure of uniqueness is shown by the following
example. Consider the equation

(2) w+(1/2) (w3 +u3) =0, (%, y) € R
Then, obviously, the functions u,, defined by
0 r<a or x>4,

Ugp(0) =3 —(1/2)(x — ), aLr<(1/2)(a+p),
—/D@—,  (A/2(a+PH<<B,
for all pairs of (a, ) with «<p are bounded, Lipschitz-continuous solu-
tions of (2), u=0 being semi-concave.

Proof of Theorem. To prove the theorem by contradiction let »
and v be two bounded generalized solutions of (E). For » and v, let U
denote a common absolute bound in R?, let P be a common Lipschitz
constant, and let k£ be a common semiconcavity constant. Let 9 denote
a domain defined by (1) and we set

K1=Sg)p (Zi] F, (@, u, D)),
K,=sup IZ] F,.|+P> sup|F,,|
9 1 i g
K3=s1£19p Zz] F,pe
For a part of our proof below the author owes to a technique sug-
gested by Douglis [3].
Since
F(x,u, grad u)=0, F(x,v, grad v)=0,
a.e. in R, the difference w=u—v satisfies the equation
Gw+ zn: G{w“=0
i=1
a.e. in R, where
G=G(x,u,v)
=Jl F.(x,v+0u—v), grad v+ 6 (grad u—grad v))db,
0
Gi=G(x, u,v)

=Il F,(z,v+60(u—v), grad v+ 6 (grad u—grad v))dé.
0
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If we set W=w?, where ¢ is an even integer, we have
(3) GW + 3 GW,,=0
i=1

a.e. in R®,

By convolving % and v with mollifying kernels, we can find two
approximating sequences {u™} and {v™} of infinitely differentiable func-
tions, each having the same absolute bound U, Lipschitz constant P
and semiconcavity constant k¥ as w and v, such that {grad «™} and
{grad v™} converge a.e. in R™ to grad # and grad v respectively. If
we set

ng:‘Gt(x’ u", ,vm), 7:=1, Ry ()
then equation (8) can be written as

(4)  GW+ 3 (GIW)a= 3, Gr—GOW.it W 35 (G
Let r be an arbltrary p031t1ve number, and we integrate the both
sides of (4) over the ball [z|<r. We thus get
qj GWdx+ w Z G? cos (n, z;)dS
lzI<T

lz|=r

= S@r —Gi)Wz,derj W 31 (6. da,

lz|<r i=1 lxl<r =1

(5)

where 7 is the outer normal to the sphere S: |x|=7and dS is the surface
element. On the other hand, we have
I GWda>c j Wiz,
lzi<r

lzi<r

j W ST GP cos (n, #)dS> —K, wads,
|z|=r =1

|zl=7r

and
jl W S (G, do < (K, + KKy Wdz,
z|<r i=1

. lzlsr
since

iZZl (G:n)mzjq f_l_‘ pri t )dﬂ
+3; j OF , (- - )dO+ v j A—O)F, (- - -)db)
3 O, [ OF i (- 0403, [ A= OF (- )d0)

tyJ=
- )=(@, o™+ H(u"‘ —o™), grad v™ 40 (grad u™—grad v™))).
(Note that, by virtue of assumption i) and the semiconcavity condition
(80),

Z uww mpj( ) tr [(M kI)F]"'kZ Fptm * )

%,j=1
<k 3 Py,

M and F' denoting the matrices (u},;) and (F,,, (- - -)) respectively.)
Substituting these inequalities into (5), we get
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cq Wdx—K, wdS

lzI<r lx|=r

<| SGr-6w.de+&,+kEK) [ Wda

|z |<r i=1 jzlgsr
and, hence, by letting m tend to infinity and using the bounded con-
vergence theorem
(6) cq Wde—K, j WdS< (K,+ kK, Wd.
lzl=r

|z IS? |zIsr
If we set

I(r)= Wdx for r>0

lxisr
and choose an even integer ¢ so large that cq >K, -+ kK,, then inequality
(6) can be written as a differential inequality for I()
al(r)—dl(r)/dr<0, r>0,
where a=(cq—K,—EkK,)/ K, is a positive constant.

Now suppose that there is a positive number 7, for which I(r,) >0.
Then the differential inequality (7) gives a lower bound I(r,) exp (a(r—1,))
for the growth order of I(r) as r tends to infinity. But this is a con-
tradiction, since the integral I(r) increases at most polynomially with
7 because of the boundedness of W=w? Therefore, I(r)=0 for >0
and, hence, the difference w=u—v must vanish identically in R». This
completes the proof.

Corollary. If f: R*—R' is of class C?* and satisfies condition i)
with F(x,u, p) replaced by f(p), then there exists at most one bounded
generalized solution of (AE).
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