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1. Introduction. If we intend to treat the Cauchy problem for
the Hamilton-Jacobi equation

ut +f(grad u)= 0, x e R, t> 0,
(grad u= (u,, ..., u.))

from the point of view of the theory of semigroups of nonlinear trans-
formations, it is necessary ([1]) to establish the existence and uniqueness
of certain bounded (possibly generalized) solutions of the associated
equation
(AE) u+f(grad u)= h(x), x e Rn,
for given h. In this note we shall consider a more general equation
of the form
( E ) F(x, u, grad u)=0, x e R,
and prove a uniqueness theorem for certain bounded generalized
(Lipschitz-continuous) solutions of (E). A semigroup treatment of the
Hamilton-Jacobi equation in several space variables will be taken up
in a later paper.

2. Definition of a generalized solution. We shall assume that
the function F(x, u, p) in (E) is real-valued and of class C with respect
to all its arguments in R R R and satisfies the following three
conditions"

i) The matrix (F,(x, u, p)), where F,=F/p,p (i, ]- 1, ., n),
is nonnegative, i.e.,

F(x, u,
t,j =1

for each (x, u, p) e R R R and each real ,, .,
ii) There exists a positive constant c such that

F,(x, u, p) >_ c
for all (x, u, p) e R R R

iii) The partial derivatives F,, F,,, F, and F,, (i= 1, ., n)
are bounded in any subdomain
( 1 ) _@={(x, u, p); x e Rn, luI<_ U, [p]_P},
where U and P are arbitrary constants.

Under the assumption i), we shall give the following definition (cf.
[3], [4]).
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Definition. A bounded and uniformly Lipschitz-continuous func-
tion u" R"R that satisfies (E) at almost all points of R is called a
bounded generalized solution of (E) if it satisfies the following semi-
concavity condition"
(SC) u(x+y)+u(x--y)--2u(x),klyl2, x, y e R,
for some constant k.

3. Uniqueness. Our aim is to prove the
Theorem (Uniqueness). Under Assumptions i)-iii), there exists

at most one bounded generalized solution of (E).
As is easily seen, there are, in general, infinitely many bounded,

Lipschitz-contiauous functions that satisfy (E) at almost all points o
R. In fact, this failure of uniqueness is shown by the following
example. Consider the equation
(2) u+(1/2)(u+u)=O, (x, y) e R.
Then, obviously, the functions u. defined by

0, x_< or x_>,
u.(x)= --(1/2)(x--a), a_x_(1/2)(a+fl),

(1/2)(x-- fl) (1/2)(a+)_ x_fl,
for all pairs of (a,/) with a_< are bounded, Lipschitz-continuous solu-
tions of (2), u0 being semi-concave.

Proof of Theorem. To prove the theorem by contradiction let u
and v be two bounded generalized solutions of (E). For u and v, let U
denote a common absolute bound in R, let P be a common Lipschitz
constant, and let k be a common semiconcavity constant. Let denote
a domain defined by (1) and we set

K=sup (-: (F,(x, u,

U sup [ F,[+P , sup [F [,

K-sup Fv.
For a part of our proof below the author owes to a teehnique sug-

gested by Douglis [3].
Since

F(x, u, grad u)-0, F(x, v, grad v)--O,
a.e. in R, the difference w=u--v satisfies the equation

Gw + Gw=O
i=l

a.e. in Rn, where
G=G(x, u, v)

=.[o F(x, v +(u--v), grad v +t (grad u-grad v))dO,

G G(x, u, v)

[ r,(x, v + O(u-- v), grad v + t (grad u--grad
J0
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If we set W--w, where q is an even integer, we have

( 3 ) qGW+ GW-O
i=1

a.e. in R’.
By convolving u and v with mollifying kernels, we can find two

approximating sequences {u} and {v} of infinitely differentiable unc-
tions, each having the same absolute bound U, Lipschitz constant P
and semiconcavity constant k as u and v, such that {grad u} and
(grad v} converge a.e. in R to grad u and grad v respectively. If
we set

G G(x, u, v), i= 1, ..., n,
then equation (3) can be written as

( 4 ) qGW+ , (G?W),-- , (G?-G,)W, + W (G),.
i=1 i=1 i=1

Let r be an arbitrary positive number, and we integrate the both
sides of (4) over the ball Ix]<_r. We thus get

q GWdx+ W G cos (n, xOdS
I<r I=r i=(5)

(G?-GOWdx+ W , (G’)dx,
IKr i=l Ix IKr i=l

where n is the outer normal to the sphere S" ]x]-r and dS is the surface
element. On the other hand, we have

GWdx>_cI Wdx,
Ir [x [r

W ] G? cos (n, xOdS>_-K WdS,
]=r i=l [x

and

W , (G),dx

_
(K+ kK) Wdx,

since

( ), , F,,( )dO
i=l

+ ( oF,(...)gO+ (1-O)N,(...
((...)=(, +o(-v), grad +0 (grad --grad ))).

(Note tha, by virtue o assumption i) and the semieoneaviy condition
(sc),

Uxx
ij=l i=1

g k F,,(...),
i=l

M and F denoting the matrices (u) and (F,(...)) respectively.)
Substituting these inequalities into (5), we get
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cq Wdx-K WdS
Ir x

and, hence, by letting m tend to infinity and using the bounded con-
vergence theorem

(6) cq I Wdx--K I WdS (K+ kK) f Wdx.

If we set

I(r)= Wdx or r0
J

and choose an even integer q so large that cqK+kK, then inequality
(6) can be written as a differential inequality for I(r)

aI(r)--dI(r)/drgO, rO,
where a=(cq--K--kK)/K is a positive constant.

Now suppose that there is a positive number r0 for which I(r0)0.
Then the differential inequality (7) gives a lower bound I(ro) exp (a(r-
for the growth order of I(v) as r tends to infinity. But this is a con-
tradiction, since the integral I(r) increases at most polynomially with
r because of the boundedness of W=wq. Therefore, I(r) 0 for 20
and, hence, the difference w=u--v must vanish identically in R. This
completes the proof.

Corollary. If f EnR is o/ class C and satisfies condition i)
with F(x, u, p)replaced by f(p), then there exists at most one bounded
generalized solution of (AE).
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