49. Automorphic Forms and Algebraic Extensions of Number Fields^{*}

By Hiroshi SAITO Department of Mathematics, Kyoto University (Comm. by Kunihiko KODAIRA, April 12, 1975)

§ 0. The purpose of this paper is to present a result on an arithmetical relation between Hilbert cusp forms over a totally real algebraic number field, which is a cyclic extension of the rational number field Q with a prime degree l, and cusp forms of one variable. The details of this result will appear in [7].

Let F be a totally real algebraic number field, and \mathfrak{o} be its maximal order. For an even positive integer κ , let $S_{\epsilon}(\Gamma)$ denote the space of Hilbert cusp forms of weight κ with respect to the subgroup $\Gamma = GL_2(\mathfrak{o})^+$ consisting of all elements with totally positive determinants in $GL_2(\mathfrak{o})$. For a place (archimedean or non-archimedean) v of F, let F_v be the completion of F at v. For a non-archimedean place v (= \mathfrak{p}), let $\mathfrak{o}_{\mathfrak{p}}$ be the ring of \mathfrak{p} -adic integers of F_v . Let F_A be the adele ring of F, and consider the adele group $GL_2(F_A)$. Let \mathfrak{U}_F be the open subgroup $\prod_{\mathfrak{p}: \text{ non-archimedean}} GL_2(\mathfrak{o}_{\mathfrak{p}}) \times \prod_{\mathfrak{q}: \text{ archimedean}} GL_2(F_q)$ of $GL_2(F_A)$. Then we can consider the Hecke ring $R(\mathfrak{U}_F, GL_2(F_A))$ and its action \mathfrak{T} on $S_{\epsilon}(\Gamma)$ as in G. Shimura [8].

For the ordinary modular group $SL_2(Z)$ (= $GL_2(Z)^+$), we also consider its adelization $\mathfrak{U}_{\boldsymbol{Q}} = \prod_p GL_2(\boldsymbol{Z}_p) \times GL_2(\boldsymbol{R})$ and the Hecke ring $R(\mathfrak{U}_{\boldsymbol{Q}}, GL_2(\boldsymbol{Q}_A))$. The latter is acting on the space $S_{\epsilon}(SL_2(\boldsymbol{Z}))$ of cusp forms of weight κ with respect to $SL_2(\boldsymbol{Z})$.

§ 1. The space $S_{\epsilon}(\Gamma)$. Suppose F is a cyclic extension of Q of degree l. We fix an embedding of F into the real number field R and a generator σ of the Galois group Gal (F/Q) of the extension F/Q, then all the distinct embeddings of F into R are given by σ^i , $0 \le i \le l-1$. We consider the group $GL_2(F)$ as a subgroup of $GL_2(R)^l$ by $g \to (g, {}^{\sigma}g, \dots, {}^{\sigma^{l-1}g})$ for $g \in GL_2(F)$. For this fixed generator σ , we define an operator T_{σ} on $S_{\epsilon}(\Gamma)$ by the permutation of variables, namely $T_{\sigma}f(z_1, \dots, z_l) = f(z_2, \dots, z_l, z_l)$ for $f \in S_{\epsilon}(\Gamma)$. Using this T_{σ} , we define a new subspace $S_{\epsilon}(\Gamma)$ of $S_{\epsilon}(\Gamma)$, to be called "the space of symmetric Hilbert cusp forms", as follows;

 $\mathcal{S}_{\epsilon}(\Gamma) = \{ f \in S_{\epsilon}(\Gamma) \mid \mathfrak{T}(e) T_{\sigma} f = T_{\sigma} \mathfrak{T}(e) f \text{ for any } e \in R(\mathfrak{U}_{F}, GL_{2}(F_{A})) \}.$

^{*)} This work was partially supported by the Sakkokai Foundation.

Obviously $S_{\epsilon}(\Gamma)$ is stable under the action of $R(\mathfrak{U}_F, GL_2(F_A))$, and we get a new representation \mathfrak{T}_S of the Hecke ring $R(\mathfrak{U}_F, GL_2(F_A))$ on the space $S_{\epsilon}(\Gamma)$.

Now we assume

- 0) The weight $\kappa \geq 4$.
- 1) The degree l = [F:Q] is a prime.
- 2) The class number of F is one.
- 3) The maximal order o has a unit of any signature distribution.
- 4) F is tamely ramified over Q.

As a consequence of 2) and 4), the conductor of F/Q is a prime q.

Our result claims that the representation \mathfrak{T}_{S} of $R(\mathfrak{U}_{F}, GL_{2}(F_{A}))$ on $\mathcal{S}_{\mathfrak{c}}(\Gamma)$ can be obtained from those on the spaces of cusp forms $S_{\mathfrak{c}}(SL_{2}(\mathbb{Z}))$ and $S_{\mathfrak{c}}(\Gamma_{0}(q), \chi)$ for various characters χ of $(\mathbb{Z}/q\mathbb{Z})^{\times}$ of order l, where

$$\Gamma_0(q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid c \equiv 0 \mod q \right\},$$

and $S_{\varepsilon}(\Gamma_0(q), \chi)$ is the space of cusp forms g which satisfy $g(\gamma z) = \chi(d)(cz+d)^{\varepsilon}g(z)$ for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(q)$.

To give a meaningful description for the above, we shall define a "natural" homomorphism $\lambda: R(\mathfrak{U}_F, GL_2(F_A)) \to R(\mathfrak{U}_Q, GL_2(Q_A))$ in the next section § 2. On the other hand, $R(\mathfrak{U}_Q, GL_2(F_A))$ is acting not only on $S_{\epsilon}(SL_2(Z))$ but also on $S_{\epsilon}(\Gamma_0(q), \chi)$. For a prime p, let T(p) and T(p, p) be the elements of $R(\mathfrak{U}_Q, GL_2(F_A))$ given in § 2. Then for $p \neq q$, T(p) and T(p, p) act on $S_{\epsilon}(\Gamma_0(q), \chi)$ in the usual manner ([9]). For q, let $\Gamma_0(q) \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} \Gamma_0(q) = \bigcup_{\nu=1}^d \alpha_{\nu} \Gamma_0(q)$ be a disjoint union, and put for $g \in S_{\epsilon}(\Gamma_0(q), \chi)$

$$g \left| \begin{bmatrix} \Gamma_0(q) \begin{pmatrix} q & 0 \\ 0 & 1 \end{bmatrix} \Gamma_0(q) \end{bmatrix} = \sum_{\nu} \chi(d_{\nu}) \frac{(\det \alpha_{\nu})^{\epsilon/2}}{(-c_{\nu}z + a_{\nu})^{\epsilon}} g(\alpha_{\nu}^{-1}z)$$

where $\alpha_{\nu} = \begin{pmatrix} \alpha_{\nu} & b_{\nu} \\ c_{\nu} & d_{\nu} \end{pmatrix}$. And we define the action of T(q) and T(q, q) on $S_{\epsilon}(\Gamma_{0}(q), \chi)$ by

$$T(q)g = g \left| \begin{bmatrix} \Gamma_0(q) \begin{pmatrix} q & 0 \\ 0 & 1 \end{bmatrix} \Gamma_0(q) \end{bmatrix} + g \left| \begin{bmatrix} \Gamma_0(q) \begin{pmatrix} q & 0 \\ 0 & 1 \end{bmatrix} \Gamma_0(q) \end{bmatrix}^* \right|$$

Here $\begin{bmatrix} \Gamma_0(q) \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} \Gamma_0(q) \end{bmatrix}^*$ denotes the adjoint operator of $\begin{bmatrix} \Gamma_0(q) \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}^*$ $\Gamma_0(q) \end{bmatrix}$ with respect to the Petersson inner product. These actions of T(p) and T(p, p) can be extended to that of $R(\mathfrak{U}_q, GL_2(\mathbf{Q}_A))$, and we obtain the representations \mathfrak{T}_1 and $\mathfrak{T}_{\mathfrak{x}}$ of $R(\mathfrak{U}_q, GL_2(\mathbf{Q}_A))$ on $S_{\mathfrak{c}}(SL_2(\mathbf{Z}))$ and $S_{\mathfrak{c}}(\Gamma_0(q), \mathfrak{X})$, respectively. Thus $S_{\mathfrak{c}}(SL_2(\mathbf{Z}))$ (resp. $S_{\mathfrak{c}}(\Gamma_0(q), \mathfrak{X})$) can be viewed as a $R(\mathfrak{U}_F, GL_2(F_A))$ -module by the action $\mathfrak{T}_1 \circ \lambda$ (resp. $\mathfrak{T}_{\mathfrak{x}} \circ \lambda$). In these notations, we can prove

230

Theorem. There exists a subspace S of $\bigoplus_{x} S_{\epsilon}(\Gamma_{0}(q), \chi)$ such that $S_{\epsilon}(\Gamma) \simeq S_{\epsilon}(SL_{2}(Z)) \oplus S^{2}$ (and $\bigoplus_{x} S_{\epsilon}(\Gamma_{0}(q), \chi) \simeq S \oplus S$)

as $R(\mathfrak{l}_F, GL_2(F_A))$ -modules, where in \bigoplus_{χ}, χ runs through all characters of order l of $(\mathbb{Z}/q\mathbb{Z})^{\times}$.

This theorem can be derived by standard arguments from the following equality between the traces of the operators.

Theorem. tr $\mathfrak{T}_{\mathcal{S}}(e) = \operatorname{tr} \mathfrak{T}_{1}(\lambda(e)) + \frac{1}{2} \sum_{x} \operatorname{tr} \mathfrak{T}_{x}(\lambda(e))$

for any $e \in R(\mathfrak{U}_F, GL_2(F_A))$.

§ 2. The homomorphism $\lambda: R(\mathfrak{U}_F, GL_2(F_A)) \to R(\mathfrak{U}_Q, GL_2(Q_A))$. Let a (resp. *n*) be an integral ideal of *F* (resp. a positive integer), and *T*(a) (resp. *T*(*n*)) be the sum of all integral elements in $R(\mathfrak{U}_F, GL_2(F_A))$ (resp. $R(\mathfrak{U}_Q, GL_2(Q_A))$) of norm a (resp. *n*). For a prime ideal \mathfrak{p} of *F* (resp. a prime *p*), let $T(\mathfrak{p}, \mathfrak{p})$ (resp. T(p, p)) denote the double coset $\mathfrak{U}_F \alpha \mathfrak{U}_F$ (resp. $\mathfrak{U}_Q \alpha \mathfrak{U}_Q$), where the \mathfrak{p} -component (resp. *p*-component) of α is $\begin{pmatrix} \pi & 0\\ 0 & \pi \end{pmatrix}$ $\begin{pmatrix} \operatorname{resp.} \begin{pmatrix} p & 0\\ 0 & p \end{pmatrix} \end{pmatrix}$ with a prime element π of $\mathfrak{o}_{\mathfrak{p}}$, and the other component is the identity. We define elements $U(\mathfrak{p}^m)$ (resp. $U(p^m)$) of $R(\mathfrak{U}_F, GL_2(F_A))$ (resp. $R(\mathfrak{U}_Q, GL_2(Q_A))$) for a prime ideal \mathfrak{p} of *F* (resp. a prime *p*) and a non-negative integer *m* by

$$\begin{split} & U(\mathfrak{o}) = 2T(\mathfrak{o}) \\ & (\text{resp. } U(1) = 2T(1)) \\ & U(\mathfrak{p}^m) = \begin{cases} T(\mathfrak{p}), & m = 1 \\ T(\mathfrak{p}^m) - N\mathfrak{p}T(\mathfrak{p}, \mathfrak{p})T(\mathfrak{p}^{m-2}), & m \ge 2 \end{cases} \\ & (\text{resp. } U(p^m) = \begin{cases} T(p), & m = 1 \\ T(p^m) - pT(p, p)T(p^{m-2}), & m \ge 2, \end{cases} \end{split}$$

where $N\mathfrak{p}$ is the cardinality of $\mathfrak{o}/\mathfrak{p}$. Then the correspondence $U(\mathfrak{p}^m) \rightarrow U(N\mathfrak{p}^m)$ can be extended to a homomorphism λ from $R(\mathfrak{U}_F, GL_2(F_A))$ to $R(\mathfrak{U}_Q, GL_2(Q_A))$.

§ 3. Applications. Our result is related to the recent works of the following authors.

(I) In their joint work [2], K. Doi and H. Naganuma studied a relation between cusp forms with respect to $SL_2(Z)$ and Hilbert cusp forms over real quadratic fields. More precisely, let $\varphi(s) = \sum_{n=1}^{\infty} a_n n^{-s}$, $a_1=1$, be the Dirichlet series associated with a cusp form of weight κ with respect to $SL_2(Z)$ which is a common eigen-function for all Hecke operators, and let χ be the real character corresponding to a real quadratic field $F = Q(\sqrt{D})$ in the sense of class field theory. If we put $\varphi(s, \chi) = \sum_{n=1}^{\infty} \chi(n) a_n n^{-s}$, then $\varphi(s) \varphi(s, \chi)$ can be expressed in the following form with suitable coefficients C_a which are defined for every integral ideal α in F;

$$\varphi(s)\varphi(s,\chi) = \sum_{a} C_{a} N a^{-s}.$$

For a Grössen-character ξ of F, we set

$$D(s,\varphi,\chi,\xi) = \sum_{a} \xi(a) C_{a} N a^{-s}.$$

In [2], K. Doi and H. Naganuma tried to prove a functional equation of $D(s, \varphi, \chi, \xi)$ and proved it for the case where the conductor of ξ is one, and showed that if the maximal order of F is an Euclidean domain, the Dirichlet series $\varphi(s)\varphi(s,\chi)$ is actually associated with a Hilbert cusp form over F and the function

$$h(z_1, z_2) = \sum_{\substack{a = (\mu) \\ \mu \neq \sqrt{a} \gg 0}} C_a \sum_{\epsilon \in E_+} \exp\left(2\pi\sqrt{-1}\left(\frac{\epsilon\mu}{\sqrt{q}}z_1 + {}^{\sigma}\left(\frac{\epsilon\mu}{\sqrt{q}}\right)z_2\right)\right)$$

on the product $\mathfrak{H} \times \mathfrak{H}$ of the complex upper half planes is a Hilbert cusp form over F. Moreover in [6], H. Naganuma showed that a similar result holds also for cusp forms of "Neben" type (in Hecke's sense) with a prime level. Now from our present result for l=2, it can be proved that $\varphi(s)\varphi(s,\chi)$ is the Dirichlet series associated with a Hilbert cusp form over a real quadratic field F, and that Doi-Naganuma's construction is "injective" under the condition of this paper.

(II) In [5], H. Jacquet studied the similar theme as Doi-Naganuma's, in a more general (adelic and representation-theoretic) point of view, hence this result should have a close connection to ours.

(III) F. Hirzebruch [3] [4] and R. Busam [1] gave a dimension formula for the subspace $S_{\epsilon}(\hat{\Gamma})$ of $S_{\epsilon}(\Gamma)$ consisting of elements f such that $T_{\sigma}f = (-1)^{\epsilon/2}f$. Since there is an obvious relation

$$\dim S_{\epsilon}(\hat{\Gamma}) = \frac{1}{2} (\dim S_{\epsilon}(\Gamma) + (-1)^{\epsilon/2} \dim S_{\epsilon}(\Gamma)),$$

our result can be viewed as a generalization of their formula.

Acknowledgement. The author would like to express his hearty thanks to Prof. K. Doi and Prof. H. Hijikata for their valuable suggestions and warm encouragement.

References

- R. Busam: Eine Verallgemeinerung gewissen Dimensionsformeln von Shimizu. Inv. math., 11, 110-149 (1970).
- [2] K. Doi and H. Naganuma: On the functional equation of certain Dirichlet series. Inv. math., 9, 1-14 (1969).
- [3] F. Hirzebruch: Hilbert modular surfaces. L'Enseigment Mathématique, 19, 183-281 (1973).
- [4] ——: Kurven auf den Hilbert Modulschflächen und Klassenzahlen relation.
 Classification of Algebraic Varieties and Compact Complex Manifold.
 Lecture Notes in Math., 412, Springer-Verlag (1974).
- [5] H. Jacquet: Automorphic Forms on GL(2). Lecture Notes in Math., 287, Springer-Verlag (1972).

No. 4]

- [6] H. Naganuma: On the coincidence of two Dirichlet series associated with cusp forms of Hecke's "Neben"-type and Hilbert modular forms over a real quadratic field. J. Math. Soc. Japan, 25, 547-555 (1973).
- [7] H. Saito: Automorphic Forms and Algebraic Extensions of Number Fields. Lectures in Math., Department of Math., Kyoto University, 8, Kinokuniya.
- [8] G. Shimura: On Dirichlet series and abelian varieties attached to automorphic forms. Ann. of Math., 76, 237-294 (1962).
- [9] ——: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, No. 11 (1971).