112. Serial Endomorphism Rings

By Ryohei MAKINO Tokyo University of Education (Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1975)

1. Recently, Ringel and Tachikawa [2] have proved that the endomorphism ring of a minimal generator cogenerator module over a serial ring is again serial. In this connection, the purpose of this note is to obtain a necessary and sufficient condition that the endomorphism rings of modules over a serial ring are serial.

Let R be a ring. An R-module M is said to be serial if its submodules form a finite chain. We call a ring R left (right) serial if $_{R}R(R_{R})$ is a direct sum of serial modules. A left and right serial ring is called *serial*, and this is the same with a generalized uni-serial ring in the sense of Nakayama [1].

A subquotient U of an R-module M will be called *proper* if U=A/Bwith $M \supseteq A \supseteq B \neq 0$, and we shall say that an R-module P appears as a proper subquotient of M if P is isomorphic to a proper subquotient of M. Subquotients U and V of a serial R-module M will be called *joined* if a non-zero submodule of one of U and V coincides with a non-zero factor module of the other of U and V. Let M_1, \dots, M_n be R-modules. An *iso*-subquotient of M_i will be a proper subquotient of M_i which is isomorphic to some M_j . A *pair*-subquotient of M_i will be a factor module of M_i which is isomorphic to a submodule of some M_j or a submodule of M_i which is isomorphic to a factor module of some M_j . With these definitions we can state the following main results.

Theorem 1. Let R be a serial ring and M_1, \dots, M_n indecomposable left R-modules. The following statements are equivalent.

a) The endomorphism ring S of $M = M_1 \oplus \cdots \oplus M_n$ is serial.

b) For each M_i , no iso-subquotient of M_i is joined with any pairsubquotient of M_i .

As a special case, if there are no iso-subquotients, then the condition b) of Theorem 1 is satisfied, so we have

Corollary 1. Let R be a serial ring and M_1, \dots, M_n indecomposable left R-modules. If no M_i appears as a proper subquotient of any M_j , then the endomorphism ring S of $M = M_1 \oplus \dots \oplus M_n$ is serial.

Since each indecomposable module over a serial ring R is serial, no indecomposable injective or projective R-modules appear as a proper subquotient of any indecomposable R-modules. So, the above corollary can be regarded as a generalization of [2, Lemma 5.6]. Applying Corollary 1, we shall prove the next theorem later on.

Theorem 2. Let R be a QF-3 ring whose minimal faithful left module is a direct sum of serial modules. Then the maximal quotient ring Q of R is serial.

Here, a QF-3 ring means a ring which has a unique minimal faithful left and right module, respectively, and we do not assume any chain conditions on R.

2. If R is a ring with the radical J and M is a left (right) Rmodule, we write T(M) = M/JM (T(M) = M/MJ) and S(M) for the socle of M. For an R-module M having the finite composition series, |M|denotes the composition length of M. We shall write homomorphisms on the opposite side to scalars.

Proof of Theorem 1. b) \Rightarrow a) We may assume that M_1, \dots, M_n are mutually non-isomorphic. For a primitive idempotent e of R, let \mathfrak{F}^e denote a set of pairs $\{[A, M_i] | 1 \le i \le n, 0 \ne A \subseteq M_i, T(A) \simeq T(Re)\}$. We introduce an order into \mathcal{F}^e by defining $[A, M_i] \leq [B, M_j]$ if there exists a homomorphism $\alpha: M_i \to M_i$ such that $(B)\alpha = A$. We want to show that \mathcal{F}^e is a disjoint union of linearly ordered components. For this aim, first consider the case $[A, M_i] \ge [B, M_j]$ and $[C, M_k] \ge [B, M_j]$. Let $\alpha: M_i \to M_j$ and $\beta: M_k \to M_j$ be such that $(A)\alpha = B$ and $(C)\beta = B$. Suppose that no order relation exists between $[A, M_i]$ and $[C, M_k]$. Then, without loss of generality, it may be assumed $|M_i/A| \ge |M_k/C|$ and $|A| \ge |C|$. Hence, we can take submodules P and Q of M_i such that $M_i \supseteq P \supseteq A$ $\supseteq Q \neq 0$, $|P/A| = |M_k/C|$ and |A/Q| = |C|. Then P/Q is a proper subquotient of M_i , and $P/Q \simeq M_k$. Namely, P/Q is an iso-subquotient of M_i , and obviously $M_i/\text{Ker}(\alpha)$ ($\subseteq M_j$) is a pair-subquotient of M_i . Since $(A)\alpha = (C)\beta = B \neq 0$, we have $0 \neq |A/\operatorname{Ker} (\alpha)| = |B| = |C/\operatorname{Ker} (\beta)| \leq |C|$ =|A/Q|, hence $M_i \supseteq P \supseteq A \supseteq Ker(\alpha) \supseteq Q$. This implies that P/Q and $M_i/\text{Ker}(\alpha)$ are joined. So, we have a contradiction. Next, let $[A, M_i]$ $\leq [B, M_j], [C, M_k] \leq [B, M_j]$ and $\gamma: M_j \rightarrow M_i, \delta: M_j \rightarrow M_k$ be such that $(B)\gamma = A$, $(B)\delta = C$. If we suppose that no order relation exists between $[A, M_i]$ and $[C, M_k]$, then as above we can take submodules P and Q of M_i with $M_i \supseteq P \supseteq A \supseteq Q \neq 0$, $|P/A| = |M_k/C|$ and |A/Q| = |C|. Since $|\operatorname{Im}(\gamma)/A| = |M_j/B| = |\operatorname{Im}(\delta)/C| \le |M_k/C| = |P/A|$ and $\operatorname{Im}(\gamma) \supseteq A \supseteq Q$, we obtain $P \supseteq \operatorname{Im}(\gamma) \supseteq Q$. This contradicts the assumption that an isosubquotient P/Q is not joined with a pair-subquotient Im (γ). For the remaining cases, the transitive law of orders assures our assertion.

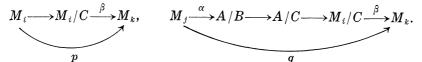
Let $e_i \in S = \operatorname{End}\left(\bigoplus_{i=1}^n M_i\right)$ be the projection onto M_i and N the radical of S. We have only to prove that both $e_i N_s$ and $_SNe_i$ are quasiprimitive i.e. homomorphic images of primitive ideals. Let $T(M_i) \simeq T(Re)$, that is, $[M_i, M_i] \in \mathfrak{F}^e$. We can choose $[A, M_k] \in \mathfrak{F}^e$ which is small next to $[M_i, M_i]$ in the linearly ordered component of \mathfrak{F}^e . Then

R. MAKINO

there exists $p: M_i \to M_k$ with $(M_i)p=A$ and $p \in e_i Ne_k$, since $[M_i, M_i] > [A, M_k]$. Hence, we have $pS = pe_kS \subseteq e_iN$. To show the inverse inclusion, let $q \in e_iN$ be a given element and $1 \le j \le n$ a given index. If $qe_j: M_i \to M_j$ is non-zero, $[M_i, M_i] \ge [\operatorname{Im}(qe_j), M_j]$. But, since qe_j is non-isomorphism, we obtain $[M_i, M_i] \ge [\operatorname{Im}(qe_j), M_j]$. It follows $[A, M_k] \ge [\operatorname{Im}(qe_j), M_j]$ by the choice of $[A, M_k]$. Thus, there exists $r: M_k \to M_j$ such that $(A)r = \operatorname{Im}(qe_j)$. Now, we note $\operatorname{Im}(pr) = \operatorname{Im}(qe_j)$, hence $\operatorname{Ker}(pr) = \operatorname{Ker}(qe_j)$. So, we can define $\alpha: \operatorname{Im}(pr) \to \operatorname{Im}(qe_j)$ by $((x)pr)\alpha = (x)qe_j$ for all $x \in M_i$. Since M_j is quasi-injective, α can be extended to $s: M_j \to M_j$. Then, obviously, $rs \in e_kSe_j$ and $qe_j = p(rs) \in pS$, so $q \in pS$. Therefore, $e_iN = pS = pe_kS$ is quasi-primitive.

For the quasi-primitivity of ${}_{S}Ne_{i}$, take $[S(M_{i}), M_{i}] \in \mathfrak{F}^{f}$. Let $[B, M_{i}] \in \mathfrak{F}^{f}$ be large next to $[S(M_{i}), M_{i}]$ in the linearly ordered component of \mathfrak{F}^{f} , and $t: M_{i} \rightarrow M_{i}$ such that $(B)t = S(M_{i})$. It suffices to show that for a given $0 \neq u = e_{j}ue_{i} \in e_{j}Ne_{i}$, there exists an element $a \in S$ with at = u (then $Ne_{i} = St = Se_{i}t$). Put $C = (S(M_{i}))u^{-1}$ i.e. the inverse image of $S(M_{i})$ by $u: M_{j} \rightarrow M_{i}$. Then since u is non-zero, $(C)u = S(M_{i})$, so $[C, M_{j}] \geq [S(M_{i}), M_{i}]$. By the choice of $[B, M_{i}]$, we have $[C, M_{j}] \geq [B, M_{i}]$. Let $v: M_{j} \rightarrow M_{i}$ be such that (C)v = B. Then $0 \neq (C)vt = (C)u(=S(M_{i}))$, hence Im (vt) = Im (u). So, $\beta: M_{j}/\text{Ker } (u) \rightarrow M_{j}/\text{Ker } (vt)$ with $(\bar{x})\beta = \bar{y}$ if (x)u = (y)vt is well defined. By the quasi-projectivity of M_{j} , we can lift β to $w: M_{j} \rightarrow M_{j}$. Then, as easily checked, (wv)t = u. So wv is a required element.

a) \Rightarrow b) Suppose that an iso-subquotient U=A/B and a pair-subquotient V of M_i are joined, and let $\alpha: M_j \rightarrow U=A/B$ be an isomorphism. If V is a factor module M_i/C and $\beta: M_i/C \rightarrow M_k$ is a monomorphism, then $M_i \supseteq A \supseteq C \supseteq B \neq 0$ since A/B and M_i/C are joined. Let $e_i Se_k$ $\exists p: M_i \rightarrow M_k$ and $e_j Se_k \exists q: M_j \rightarrow M_k$ be as follows.



Since ${}_{s}Se_{i}$ is serial, there must exist $e_{i}Se_{j} \ni r: M_{i} \rightarrow M_{j}$ with rq = p or $e_{j}Se_{i} \ni s: M_{j} \rightarrow M_{i}$ with sp = q. But, this is impossible, since $|\text{Im}(p)| = |M_{i}/C| \ge |A/C| = |\text{Im}(q)|$, $|\text{Ker}(p)| = |C| \ge |C/B| = |\text{Ker}(q)|$ and $q \neq 0$.

Next, if V is a submodule of M_i and $\gamma: M_i \rightarrow V$ is an epimorphism, then $M_i \supseteq A \supseteq V \supseteq B \neq 0$. Let $t: M_i \rightarrow M_i$ and $u: M_i \rightarrow M_j$ be as follows.

$$M_{i} \xrightarrow{\gamma} V \longrightarrow M_{i}, \qquad M_{i} \xrightarrow{\gamma} V \longrightarrow V/B \longrightarrow A/B \xrightarrow{\alpha^{-1}} M_{j},$$

Then, similarly to the above, we conclude that there must exist $v: M_j \rightarrow M_i$ with uv = t or $w: M_i \rightarrow M_j$ with tw = u. But, |Im(t)| = |V| > |V/B|

=|Im(u)|, $|\text{CoIm}(t)| = |M_i/V| > |A/V| = |\text{CoIm}(u)|$ and $u \neq 0$. Thus, also in this case, we have a contradiction.

To prove Theorem 2, we need the following lemma.

Lemma. Let $M = M_1 \oplus \cdots \oplus M_n$ be a left R-module and $S = \text{End}(_R M)$. If each M_i is serial and injective (resp. projective), then S is right (resp. left) serial.

Proof. We prove only the part that the injectivity of each M_i leads to the right seriality of S, because the other part can be proved by quite dual argument. Let $e_i: M \to M_i$ be the projection onto M_i . We show that for $e_i S \ni s: M_i \to M$ and $e_i S \ni t: M_i \to M$ with Ker (s) \subseteq Ker (t), there exists $S \ni u: M \to M$ with su = t. Since M_i is serial, Ker $(se_k) = \bigcap_j \text{Ker}(se_j) = \text{Ker}(s)$ for some index $1 \le k \le n$, then Ker (se_k) $= \text{Ker}(s) \subseteq \text{Ker}(t) = \bigcap_j \text{Ker}(te_j) \subseteq \text{Ker}(te_j)$. So, let $\alpha: M_i/\text{Ker}(se_k)$ $\to M_i/\text{Ker}(te_j)$ be the canonical epimorphism and $\overline{se}_k: M_i/\text{Ker}(se_k)$ $\to \text{Im}(se_k)$ and $\overline{te}_j: M_i/\text{Ker}(te_j) \to \text{Im}(te_j)$ the isomorphisms induced by se_k and te_j , respectively. Consider the commutative diagram

$$M_{i} \xrightarrow{M_{i}/\operatorname{Ker}(se_{k}) \xrightarrow{se_{k}} \operatorname{Im}(se_{k}) \longrightarrow M_{k}}}_{M_{i}/\operatorname{Ker}(te_{j}) \xrightarrow{\overline{te}_{j}} \operatorname{Im}(te_{j}) \longrightarrow M_{j}},$$

where β exists since both \overline{se}_k and \overline{te}_j are isomorphisms, and u_j exists since M_j is injective. Thus, we have $se_ku_j = te_j$. Taking u_j for each $1 \le j \le n$, we obtain $t = \sum_j te_j = \sum_j se_ku_j = s\left(\sum_j e_ku_j\right)$ and $\sum_j e_ku_j \in S$, as required.

Now, let L_1 and L_2 be given subideals of e_iS . If there exists $L_1
ightarrow p: M_i \rightarrow M$ such that Ker $(p) \subseteq$ Ker(q) for any $L_2 \ni q: M_i \rightarrow M$, then $L_1 \ni pr = q$ for some $r \in S$, so $L_1 \supseteq L_2$. If there does not exist such p, then for any $u \in L_1$ we can choose $v \in L_2$ with Ker $(u) \supseteq$ Ker(v), thus $u = vw \in L_2$ for some $w \in S$, so $L_1 \subseteq L_2$. This implies that e_iS_S is serial, so S is right serial.

As easily seen from the above proof, it is to be noted that in Lemma the finiteness of the chain that all submodules of M_i and $_sSe_i$ (e_iS_s) form is not necessary.

Proof of Theorem 2. Let $_{R}Re$ be a minimal faithful left R-module, then $Q = \text{End}(Re_{e_{R}e})$ (c.f. [3, p. 47]). Put $_{Q,R}M_{S} = _{Q,R}Re_{e_{R}e}$, and let $S \ni 1 = \sum_{i=1}^{m} e_{i}$ be decomposition of 1 into orthogonal primitive idempotents. Since $_{R}Re$ is a direct sum of injective and projective serial modules, $S = \text{End}(_{R}Re)$ is serial by the above lemma. We note that M_{S} is finitely generated (c.f. [3, p. 59]), so let $M_{S} = M_{S}^{(1)} \oplus \cdots \oplus M_{S}^{(n)}$ be a direct sum decomposition into indecomposable modules. Now, suppose that $M_{S}^{(i)}$ appears as a proper subquotient of $M_{S}^{(j)}$, that is, $M^{(i)} \simeq A/B$ and $M^{(j)} \supseteq A \supseteq B \neq 0$. Let $T(M^{(i)}) \simeq T(A) \simeq T(e_kS)$, and take $x = xe_k \in M^{(i)} \setminus M^{(i)}N$ and $y = ye_k \in A \setminus AN$, where N the radical of S. Since $_QMe_k$ is an indecomposable direct summand of $_QM$, $_QMe_k$ is serial. From $x, y \in Me_k$ it follows there exists $p \in Q$ with px = y or $q \in Q$ with qy = x. Since $Q = \text{End}(M_S)$, this implies that there exists $\alpha : M_S^{(i)} \to M_S^{(j)}$ with $\alpha(x) = y$ or $\beta : M_S^{(j)} \to M_S^{(i)}$ with $\beta(y) = x$. But, this is impossible. Therefore, according to Corollary 1, we conclude Q is serial.

The following is a consequence of Theorem 2.

Corollary 2. If R is a left serial QF-3 ring which is a maximal quotient ring, then R is serial.

References

- [1] T. Nakayama: On Frobeniusean algebra. II. Ann. Math., 42, 1-21 (1941).
- [2] C. M. Ringel and H. Tachikawa: QF-3 rings. J. Reine Angew. Math., 272, 49-72 (1975).
- [3] H. Tachikawa: Quasi-Frobenius rings and generalizations. Lecture Notes in Math. Vol. 351, Springer-Verlag (1973).