175. Global Analytic-Hypoellipticity of the $\bar{\partial}_{\text {. Neumann Problem }}$

By Gen Komatsu
Mathematical Institute, Tôhoku University
(Comm. by Kunihiko Kodarra, m. J. A., Dec. 12, 1975)

1. Statement of Theorem. Let $M \subset C^{n}$ be a domain with compact closure \bar{M} and (real)-analytic boundary $b M$. We denote by r the distance function to $b M$ measured as positive outside and negative inside M. We define Ω_{ρ}^{\prime} as the tubular neighborhood of $b M$ in C^{n} with small width ρ, and set $\Omega_{\rho}=\bar{M} \cap \Omega_{\rho}^{\prime}$. By T_{t} we denote the subbundle of the complexified tangent bundle $C T$ over Ω_{ρ}^{\prime} of all vectors X with $\langle d r, X\rangle=0$, where \langle,$\rangle is the duality between covectors and vectors.$ Splitting $C T$ as $C T=T^{1,0} \oplus T^{0,1}$ with the subbundle $T^{1,0}$ of vectors of type $(1,0)$ and its complex conjugate $T^{0,1}$, we set $T_{t}^{1,0}=T^{1,0} \cap T_{t}$ and $T_{t}^{0,1}=\overline{T_{t}^{1,0}}$. Then the Levi form at $\mathrm{P} \in \Omega_{\rho}^{\prime}$ is defined on the fibre $\left(T_{t}^{1,0}\right)_{\mathrm{P}}$ of $T_{t}^{1,0}$ at P by

$$
\left(T_{t}^{1,0}\right)_{\mathrm{P}} \times\left(T_{t}^{1,0}\right)_{\mathrm{P}} \ni\left(X_{1}, X_{2}\right) \mapsto\left\langle\partial \bar{\partial} r, X_{1} \wedge \bar{X}_{2}\right\rangle .
$$

Denote by $\mathcal{A}^{p, q}$ the space of forms of type (p, q) on \bar{M} which have C^{∞} extensions to C^{n}, and define the L^{2}-inner product by

$$
(\varphi, \psi)=\int_{M}\langle\varphi, \psi\rangle d V, \quad \varphi, \psi \in \mathcal{A}^{p, q},
$$

with the pointwise inner product \langle,$\rangle and the volume form d V$ on M. For the Cauchy-Riemann operator $\bar{\partial}: \mathcal{A}^{p, q-1} \rightarrow \mathcal{A}^{p, q}$ and its formal adjoint $\vartheta: \mathcal{A}^{p, q} \rightarrow \mathcal{A}^{p, q-1}$, integration by parts gives us

$$
(\vartheta \varphi, \psi)=(\varphi, \bar{\partial} \psi)+\int_{b M}\langle\sigma(\vartheta, d r) \varphi, \phi\rangle d S,
$$

where $\sigma(\cdot, d r)$ denotes the principal symbol of . at $d r$, and $d S$ the volume form on $b M$. We set $\mathscr{D}^{p, q}=\left\{\varphi \in \mathcal{A}^{p, q} ; \sigma(\vartheta, d r) \varphi=0\right.$ on $\left.b M\right\}$, and define a quadratic form on $\mathscr{D}^{p, q}$ by

$$
Q(\varphi, \psi)=(\bar{\partial} \varphi, \bar{\partial} \psi)+(\vartheta \varphi, \vartheta \psi)+(\varphi, \psi), \quad \varphi, \psi \in \mathscr{D}^{p, q} .
$$

Consider the following variational problem (cf. [1], [3]): Given $\lambda \in C$ and $\alpha \in \mathcal{A}^{p, q}$ with $q>0$, find $\varphi \in \mathscr{D}^{p, q}$ such that

$$
\begin{equation*}
Q(\varphi, \psi)+(\lambda \varphi, \psi)=(\alpha, \psi) \quad \text { for all } \psi \in \mathscr{D}^{p, q} \tag{1}
\end{equation*}
$$

Now we have
Theorem. If the Levi form is non-degenerate and does not have exactly q negative eigenvalues in Ω_{ρ}^{\prime}, then every solution φ of the equation (1) is analytic in Ω_{ρ} whenever α is analytic there.

We remark that this Theorem can easily be generalized to the case of domains M in complex manifolds with analytic hermitian metric.
2. A priori estimate and a special vector field. Letting $\mathcal{A}_{\rho}^{p, q}$ denote the space of elements in $\mathcal{A}^{p, q}$ supported in Ω_{ρ} and setting $\mathscr{D}_{\rho}^{p, q}$ $=\mathcal{A}_{\rho}^{p, q} \cap \mathscr{D}^{p, q}$, we define an operator $\bar{n}: \mathcal{A}_{\rho}^{p, q} \rightarrow \mathcal{A}_{\rho}^{p, q}$ of order zero by $\bar{n}=\sigma(-\bar{\partial} \vartheta, d r)$, which is an orthogonal projection relative to the inner product \langle,$\rangle . Denoting by \Gamma(\cdot)$ the space of sections of . over Ω_{ρ}^{\prime} and letting $\nabla_{X}: A_{\rho}^{p, q} \rightarrow \mathcal{A}_{\rho}^{p, q}$ be the (complex) covariant differentiation along $X \in \Gamma(C T)$, we set $\tilde{\nabla}_{X}=\bar{n} \nabla_{X} \bar{n}+(1-\bar{n}) \nabla_{X}(1-\bar{n})$, which maps $\mathscr{D}_{\rho}^{p, q}$ into itself if $X \in \Gamma\left(T_{t}\right)$.

By means of local orthonormal basis (L_{1}, \cdots, L_{n}) of $T^{1,0}$ with L_{n} $=R=$ the dual of ∂r, we define a norm on $\mathscr{D}_{\rho}^{p, q}$ by

$$
N(\varphi)=\left(\int_{M}\left(\sum_{i=1}^{n}\left|\tilde{V}_{\bar{L}_{i}} \varphi\right|^{2}+\sum_{i=1}^{n-1}\left|\tilde{V}_{L_{i}} \varphi\right|^{2}+|\varphi|^{2}\right) d V\right)^{1 / 2}
$$

with $|\varphi|^{2}=\langle\varphi, \varphi\rangle$, which is well-defined when ρ is small.
We say the basic estimate holds in $\mathscr{D}^{p, q}$ if for some $C>0$,

$$
\int_{b M}|\varphi|^{2} d S \leqslant C Q(\varphi, \varphi) \quad \text { for all } \varphi \in \mathscr{D}^{p, q}
$$

an estimate guaranteed by our assumption (see [2]). Now one has
Lemma 1 (a priori estimate). If the basic estimate holds in $\mathscr{D}^{p, q}$, then there exists a constant $C>0$ such that

$$
C^{-1} N(\varphi)^{2} \leqslant Q(\varphi, \varphi) \leqslant C N(\varphi)^{2} \quad \text { for all } \varphi \in \mathscr{D}_{\rho}^{p, q}
$$

We need commutator estimates as usual in proving the regularity. The vector field Y given in the following lemma will play an essential role in our commutator estimates.

Lemma 2. Suppose that the Levi form is non-degenerate in Ω_{ρ}^{\prime}. If ρ is sufficiently small, then there exists an analytic vector field $Y \in \Gamma\left(T_{t}\right)$ with $\bar{Y}=-Y$ such that

$$
\begin{aligned}
& \langle\partial r,[X, Y]\rangle=0 \text { in } \Omega_{\rho}^{\prime} \quad \text { for all } X \in \Gamma\left(T_{t}^{1,0} \oplus T_{t}^{0,1}\right), \\
& \langle\partial r,[\bar{R}, Y]\rangle=0 \text { on } b M \quad \text { and }\langle\partial r, Y\rangle=1 \text { on } b M,
\end{aligned}
$$

where $\left[X_{1}, X_{2}\right]$ denotes the commutator $X_{1} X_{2}-X_{2} X_{1}$.
Taking ample vector fields $Z_{1}, \cdots, Z_{2 n} \in \Gamma\left(T_{t}^{1,0} \oplus T_{t}^{0,1}\right)$ which are analytic, and letting $|K|=l$ and $\tilde{V}_{Z}^{K}=\tilde{V}_{z_{k_{1}}} \cdots \tilde{V}_{Z_{k_{l}}}$ for ordered integers $K=\left(\kappa_{1}, \cdots, \kappa_{l}\right)$ with $1 \leqslant \kappa_{i} \leqslant 2 n$, we set

$$
N(\varphi ; l, m)=(l+m)!^{-1} \max _{|K|=l} N\left(\tilde{\nabla}_{Z}^{K} \tilde{\nabla}_{Y}^{m} \varphi\right) \quad \text { for } \varphi \in \mathscr{D}_{\rho}^{p, q} .
$$

3. Sketch of the proof of Theorem. Recall that the solution φ of the equation (1) satisfies the second order differential equation

$$
\square \varphi+(\lambda+1) \varphi=\alpha, \quad \text { where } \square=\bar{\partial} \vartheta+\vartheta \bar{o} .
$$

Then, if we notice that the operator \square has analytic coefficients and is of elliptic type, the analyticity of the solution φ near $b M$ will follow by virtue of the Holmgren's theorem from that of the Cauchy data of φ on $b M$ (see [4]), a fact which is equivalent to

$$
\begin{equation*}
N(\zeta \varphi ; l, m) \leqslant C_{0} C_{1}^{l} C_{2}^{m} \quad \text { for all } l \geqslant 0 \text { and } m \geqslant 0, \tag{2}
\end{equation*}
$$

where $\zeta=\zeta(r)$ is a function of r supported in Ω_{ρ}^{\prime} and $\zeta=1$ near $b M$. In
view of Lemma 1, the inequalities (2) will be obtained by estimating the commutators
(3) $\quad Q(D \zeta \varphi, D \zeta \varphi)-Q(\zeta \varphi, D * D \zeta \varphi), \quad D=\tilde{\nabla}_{Z}^{K} \tilde{V}_{Y}^{m},|K|=l$, with D^{*} denoting the formal adjoint of D, for $\zeta \varphi$ satisfies the $\bar{\partial}$-Neumann conditions $\zeta \varphi \in \mathscr{D}^{p, q}$ and $\bar{\partial}(\zeta \varphi) \in \mathscr{D}^{p, q+1}$ so that

$$
Q\left(\zeta \varphi, D^{*} D \zeta \varphi\right)+\left(\lambda \zeta \varphi, D^{*} D \zeta \varphi\right)=\left((\square+\lambda+1) \zeta \varphi, D^{*} D \zeta \varphi\right)
$$

The estimates of (3) are carried out by using the properties of Y in Lemma 2, and the proof of (2) can be done in two step induction. One proves first the inequalities (2) for $l=0$ by inductive use of the corresponding estimates of (3). The case $l>0$ can be obtained by combining the estimates of (3) with the results for $l=0$.

References

[1] G. B. Folland and J. J. Kohn: The Neumann problem for the CauchyRiemann complex. Ann. of Math. Studies, No. 75, Princeton Univ. Press (1972).
[2] L. Hörmander: L^{2} estimates and existence theorems for the $\bar{\partial}$ operator. Acta Math., 113, 89-152 (1965).
[3] J. J. Kohn: Harmonic integrals on strongly pseudo-convex manifolds. I. Ann. of Math., 78, 112-148 (1963) ; II. ibid., 79, 450-472 (1964).
[4] C. B. Morrey, Jr., and L. Nirenberg: On the analyticity of the solutions of linear elliptic systems of partial differential equations. Comm. Pure Appl. Math., 10, 271-290 (1957).

