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In [2], [3] and [4] we studied on continuation of real analytic solu-
tions of partial differential equations with constant coefficients by way
of the Fourier transform and the Fundamental Principle. Recently,
in [5] we have given a new method for the problem by way of the
boundary value theory. This method allows us to treat the equations
with real analytic coefficients as is seen below.

1. Estimate of the singular spectrum of the boundary values
.of real analytic solutions. Let UcR be an open neighborhood of the
origin. Put U U fq {+ x: > 0). We denote the partition of the vari-
ables by x= (xt, x’)= (x, x", xO. We employ similar notation or the
dual variables . Let p(x, D) be an m-th order linear partial differential
operator with real analytic coefficients. Assume that xt=O is non-
characteristic. Then for a solution u of p(x,D)u=O in U+, we can
define the boundary values b](u), ]=0, 1, ..., m-l, of u to x=O. In-
tuitively this is equal to b(x, D)ul=+o, where b are the ]-th order com-
ponent of the boundary system dul to {(--O/Ox))?__-0. It is character-
ized by the identity"

p(x, D)[u]---- , b(u)(--)(Xl),
j=O

where [u] e _(U) is the canonical extension of u satisfying supp [u]
{x_> 0} (see [7]).
Theorem 1. Let p(x, D) be as above. Assume further that the

principal part p(x, D) is of principal type and has real coefficients.
Let V(,0,...,0)(p) be the set of points (x; 4-A’c)e RnX -_-_-2 such
that the algebraic equation p(x, , ’)--0 in has a non-real root or a
real multiple root. Then for every real analytic solution u of p(x, D)u
=0 in U+ we have

S. S. b(u) V(+/-,0,...,0)(P) I=0.
Proof. Let V be an open set in xl=0 such that V c U fq (xl=0}.

We can assume that u is a real analytic solution on (0 < x_<} V. Let
[[u]] be a modification of [u] such that supp [[u]]R V and [[u]]=[u]
in {x_< e} V. For x> 0 we can emply the characteristic function Z(x’)
of V and put [[u]]=Z(x’)u. Then we have
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m-1

p(x, D)[[u]] + v-- ,
where suppvROV, suppf and f=b2(u) in V. We can assume
that [[]] and eontain x as a real analytic parameter on t>O. Put

W(x’, o’) (n-- 2) ((1-- rZ--x%’)--- (1-- /-A-x%’)-(x’- (x%’)))
(-- 2/-L--)-l(x%’ + f-A-(x’--- (x%’)))-Then S.S. W(x’, w’)= (0 -A-’oo) for each fixed ’. We have (x’)

=[ W(x’, ’)d’ ([8], Chapter III, formula (2.1.1)). Thus, if

(0, y’; ’)e V(,o,...,o)(p), we can apply [6], Theorem 2.7 and find
the solution w(x, y’, ’), k=0, ..., m-l, of the following Cauchy pro-
blem for "/-hyperbolic equation""

tp(x,D)w,=O,( 1 )
((-/x)w]o=,__W(y’--x’,’), =0,..., m--1.

We have

{p(x, D)[[u]] + y’, ’)Y(-- x)dx}W(Z

( ) Z(’)--()w(, v’, ’)g(e-)g

On he oher hand, by integration by ars his is equal o

(3) b(x, D)[[u]]l,.(--O/Ox)--w(x, y’, ’),,dx’
j=O

+.[ vw(x, y’, ’)Y(-x)dx.

Assume that is small enough. Note that the bicharacteristic strip
starting from (0, y’; 0,’)has a spatial trace transversal to x=0,
because =0 is not a multiple root of the equation p(0, y’, ,’)=0
by the assumption. Thus from the proof of the above quoted theorem,
we see that S. S. w(x, y’,’) is contained in the c(D-neighborhood of
{(x, y’; ],’) x’=y’, ’=--’=’}, where c(D0 if 0.
Since supp vR3V and b(x,D)[[u]]],, are real analytic in V, we
conclude that the above function of y’ is real analytic on a neighborhood
of the point under consideration, depending analytically on ’. Thus
we have shown (y’; ’)e S.S.f(x’). q.e.d.

Remark. A more precise consideration shows that the above
estimate can be sharpened about a half. For the case of constant
coefficients see [5], Theorem 2.1.

2. Continuation of real analytic solutions.
Theorem 2. Let p(x, D) be as in Theorem 1. Let K be a set con-

tained in x=0, (x’)0, where (x’) is a real analytic function
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of x’ satisfying (0)=0, d?(0):/:0. Assume that (0; /-Z-d(0)co)
e V(+/-l,0,...,0)(p). Then every real analytic solution u o[ p(x,D)u=O
defined on a neighborhood o/ the origin except on K can be continued
as a hyperfunction solution to K in a smaller neighborhood.

Proof. Consider the difference b(u)= b(u)--b(u) of the boundary
values from both sides of x=0. Clearly supp b(u) is contained in K.
By the assumption we can apply Theorem 1 and conclude that S. S. b(u)
do not contain (0; g-Z-/d(0)). Thus by the Holmgren type theorem
([8], Chapter III, Proposition 2.1.3), we conclude that b(u)=0 on a
neighborhood of the origin. Due to [7], Theorem 4 this implies that u
can be continued as a hyperfunction solution to K in that neighborhood.

q.e.d.
Note that if in addition every bicharacteristic curve flows out of

K on any small neighborhood of the origin, then by [6], Theorem 3.3’
the propagation of regularity holds and we conclude that u is in fact
continued real analytically to K in a smaller neighborhood. For ex-
ample, so is the case when K is an isolated point.

3. Continuation of infinitely differentiable solutions. The
following theorem is the extension of the result of Gruin [1] who
treated the case of constant coefficients.

Theorem 3. Let p(x,D) be as in Theorem 1. Assume that
V(,0,...,0)(p) does not contain the whole fibre {0} /-A-S-. Then,
every infinitely differentiable solution u of p(x,D)u=O defined on a
neighborhood of the origin except the origin itself, can be continued
to the origin as an infinitely differentiable solution.

Proof. We go back to the proof of Theorem 1. This time we can
cut off u such that in (2)-(3) [[u]] is infinitely differentiable near R3V
and v is infinitely differentiable everywhere. The proof of [6], Theorem
2.7 shows that the solution w(x, y’, ’) of the Cauchy problem (1) is a
distribution. Let/2 be an open set in S- satisfying {0} --9c
R/-L--S-\V(,0,...,0)(p) and 9-9, where a denotes the antipodal
mapping. Thus, for b(u)--b(u)--b(u) we conclude that supp b(u)
is concentrated at the origin and b(u).W(x’, ’) is infinitely differenti-
able for those fixed ’ e/2. Obviously we can get the same conclusion
when we employ W(x’, ’)=exp (- x’)W(x’, ’) instead of W(x’, o’) in the

initial conditions. Since (x’)=exp (--x’2)(x’)= W(x’, w’)dw’, we have

( 4 ) b(u) b(u).W(x’, o’)do/+ b(u). W(x’, o/)do’.

The Fourier image b(u) is an entire unction of infra-exponential
growth. By the above consideration, the first term of (4) is infinitely
differentiable. Hence its Fourier image decreases on the real space
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faster than (1 /l’l)- for any N>0. On the other hand, an elementary
consideration employing the deformation of the path of integration
shows that the Fourier image of the second term rapidly decreases for
every ’ e (c.f. [5], Lemma 2.3). Thus, for each fixed ’, the entire
function b(u)(z’) of one variable z is of infra-exponential growth and
decreases on the real axis faster than (l/lzl)- for any N>0. The
Phragmn-LindelSf theorem and the Liouville theorem shows that it
vanishes identically. Thus b(u)--O and by [7], Theorem 4, u can be
continued as a hyperfunction solution to the origin.

Finally we prove the regularity. Let E(x, y) be one of the funda-
mental solution of p(x, D)E--(x--y). Then construction of [6] gives
it as a distribution. Let [u] be a function obtained from u by cutting
off the support in an infinitely differentiable way outside a neighborhood
of the origin. We have

[u](y)-- {p(x, D)E(x, y)}[u](x)dx

=[ E(x, y)p(x, D)[u](x)dx,

in the sense of hyperfunctions. Because p(x,D)[u] vanishes on a
neighborhood of the origin, it is infinitely differentiable, hence so is the
last term. q.e.d.

Note that the above proof can be applied to the classical solution
of class C, thus producing the extension of u as a distribution solution.
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