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6. On Polythetic Groups

By Reri TAKAMATSU
Department of Mathematics, Sophia University

(Comm. by Kosaku YosIDA, M. J. A., Jan. 12, 1976)

§ 1. Let G be a locally compact abelian (LCA) group and Z be the
additive group of integers. We say G is polythetic if it has a dense
subgroup which is a homomorphic image of Z*. In other words G is

to contain » elements %,, - - -, x, such that the subgroup
{ma,+ - Mz, (my, -, my) € 27}
is dense in G. We call such elements z,, - - -, x, ‘generators of G’.

In the case n=1, G is called monothetic and for compact mono-
thetic groups their characterization is stated in terms of their duals by
Halmos and Samelson [1]. In this paper we have characterization of
LCA polythetic groups by their structures and the smallest numbers of
their generators. For the terminologies and notations in this note,
see Rudin [2].

The author wishes to thank Professor M. Nagumo for his valuable
suggestions.

§ 2. For a LCA polythetic group G let A(G) be the set of integers
7>0 such that there exists a homomorphic image of Z* which is dense
in G. Clearly A(G) has the smallest element, which we denote by s(@).

Now we state the characterization of compact polythetic groups.

The annihilator 4 of a closed subgroup H of G isthe setof all y e I”

(the dual group of G) such that (x,7)=1forall xe H. A forms a closed
subgroup of I'.

Lemma 1. Fori=1,.-.,n, let H; be the closure of the subgroup
generated by x;€ G, A; be its annihilator, and let H be the subgroup
of G generated by x,, -+ -, %,. H is dense in G if and only if (n] 4,={0}.

7=1

We denote by T the multiplicative group of all complex numbers
of absolute value 1 with the usual topology (or equivalently the additive
group of real numbers mod 2z) and by T, the same group with the
discrete topology.

Theorem 1. Let G be a compact abelian group. G is polythetic
if and only if I" is isomorphic to a subgroup of T=.

Proof. If G is polythetic, G has generators x,, - -+, x,. Since the
natural mapping « of 7% onto 7™ is an algebraic isomorphism, the
mapping r—a ' ((xy, 1), - - -5 (X4, 7)) is an isomorphism of I" into T%, be-
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cause a—l((xla T), ) (xm T))=(1, <o 1) implies (xn T)= v =(xn, T)=1
and then y=0 (by Lemma 1).

Conversely let I" be isomorphic to a subgroup of T7%, then by ex-
pressing « as a=(ay, - - -, a,), Where «; is a continuous homomorphism
of T2 into T, we can choose z; € G (=1, - - -, n) such that the restriction
of a; to I' coinsides with x;; a;(y)=(x;,7) for all yeI'. Since « is one
to one, (#;,p)="-+=(x,,y)=1 if and only if y=0. Hence by Lemma

1, we have (n] A;={0}, where 4, is the annihilator of the closure of the
i=1

subgroup generated by z;. It follows that G is polythetic. Q.E.D.

Now let us recall that the dual group of a compact abelian group
is discrete. Theorem 1 is advanced to the following

Theorem 2. A discrete group I' is isomorphic to a subgroup of
T2 if and only if its cardinal number is not greater than the power of
the continuum and its torsion group is isomorphic to a subgroup of T%.

Theorem 3. Let G be compact and G, be the connected component
of 0in G. G is polythetic if and only if G is separable and the totally
disconnected factor group G/G, is polythetic. And then we have
s(@H=8(G/Gy.

The proofs of these Theorems for n=1 are given in [1] and the
same proofs hold also for n=2.

§ 3. In this section we consider a non-compact polythetic group
G and its polythetic subgroups which are useful to characterize s(G).

We denote by A@B the direct sum of two groups A and B.

Theorem 4. Every LCA polythetic group G has an open subgroup
G’ with the following properties;

i) G’ is the direct sum of a compact group H and R* (1=0),
il) G=G'®Z* for some k=0,

iii) s(@=s(G@)+k.

Proof. Put s(G)=n and denote by & the dense subgroup of G
generated by n elements ,, --+,2, € G. Since ® is finitely generated
we can assume x,, - - -, £, are independent.

By the principal structure theorem (see [2]), G has an open sub-
group G, which is the direct sum of a compact group H, and R* (1=0).

If there exists #;& G; 1<j<n) such that m,x,; € G, for some m,
(x0) € Z, then let us consider the subgroup G,=<{G,, ¥;> generated by
G, and ), where 2 is an element in G chosen as follows; we express
myx; as mex,=h+r (he H,r e RY) and let o)j=x;,—r/m,.

Since mx; € H,, G, is a finite union of cosets of G,, hence is open,
and by the same reason the subgroup H,=<{H,, 2> is compact. Now,
@, is the direct sum of H, and R!, because the existence of m(x0)cZ
and h e H, such that h+ma) e R' implies that m,(h+ma)) € R* and at
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the same time that m,(h +ma)) € H,, which is a contradiction.

After finite steps we obtain an open subgroup G;=G’ which is the
direct sum of a compact group H,=H and R’ such that either mz; € G’
for all meZ or ma; & G’ for all m(x0)eZ. It follows G=G'®Z* for
some k=0 and s(@)=s(G") +k. Q.E.D.

Theorem 5. Let G be a LCA polythetic group which is the direct
sum of a compact group H and R (1>0). Then G has a discrete sub-
group D such that

i) D is isomorphic to Z,
ii) the factor group G/D is compact,

iii) s(@)=s(G/D)+1.

Proof. Put s(G)=n and as in the proof of Theorem 4, let & be a
dense subgroup generated by independent elements z; 1 <i<n).

x, is written as x;=a;+b; (a; € H,b, e R) 1<i<n.

Since the subgroup<b,, - - -, b,> generated by b,, - - -, b, € R'is dense
in R!, as vectors in R!, {b,, .-+, b,} contains [ linearly independent
vectors, which we say b,, ---,b;. Put D=y, - -+, ¥;)>.

Since <b;, - - -, b, is isomorphic to Z* in R’, D is discrete and iso-
morphic to Z' in G. We show G/D is compact. Let W be a compact
neighborhood of 0 in R! such that RPTcW+<b,, --+,b,>. Then GC(H
@W)+D. Since HOW is compact we have G/D is compact. Further
the structures of ® and D show that s(G)=s(D)+s(G/D). Q.E.D.

Theorem 5 does not mention any relation between s(G) and s(H).

However in the special cases, we can obtain a relation by Theorem

5.

Theorem 6. If H is compact connected separable and if G=H
@R, then we have s(@)=s(H)\ (1+1), where a\/ b=max {a, b}.

Proof. The assumptions on H imply s(H)=1 (see [1]). Hence
s(H)\/ (I14+1)=1+1 holds for any integer [>0. We show s(G)=1+1.

By Theorem 5 we can choose a discrete subgroup D such that G/D
is compact and s(G)=s(G/D)+1. Since G/D is connected and separable
we have s(G/D)=1. It follows s(G)=1+1. Q.E.D.

Theorem 7. If H is compact separable and is a direct sum of a
connected group H, and a totally disconnected group H,, and if G=H
@R, then we have s(@)=s(H)\/ (I4+1).

Proof. We write G as G=H®G,, where G,=H,®R!. Since s(H)
=s(H,PH)=s(H,) by Theorem 3 and s(Gy)=1+1 by Theorem 6, we
have

s(@G)=s(H)Vs(Gy=sH)V(I+1).

Put m=min {s(H)), s(G,)} and n=max {s(H,), s(Gy}. In order to
show s(@<s(H)Vs(G,), we say that for some z,, - - -, 2, ¢ G, &=,
«++,%,> is dense in G. First we assume m=s(H,). Let a,,---,a, be
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generators of H, and b,, - - -, b, be generators of G,. Define z; € G by
xy=0;+Db; ifl<sjsm
=b, ifm4+1<i<n.

Let yeI" be such that y=1 on &. 7 can be uniquely written as
r=7"+7” where ¢ € I'” (the dual group of H,) and y” e I (the dual of
G,). Hence we have

@5, )=(a;, N0, =1 for 1<j<m and ke Z,
=(b;, y"N¥=1 for m+1<j<n and ke Z.

Since y” has finite order ¢, putting k=¢q we have g7 ¢ rn) A;, where
7=1

4; is the annihilator of the closed subgroup generated by b;. It follows
by Lemma 1 ¢y”=0. But since 7 has infinite order, y” must be 0.
Hence we have
(a;, 7N)¥=1 for1<j<m and ke Z.
Again by Lemma 1, we get y’=0. We have shown that y=0, that is,
& is dense in G. The proof for m=s(G,) is obtained similarly.
Q.E.D.
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