
No. 3] Proc. Japan Acad., 52 (1976) 91

Putcha’s Problem on Maximal
Cancellative Subsemigroups

By Takayuki TAMURA
University of California, Davis, California, 95616, U. S. A.
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1. Introduction. Let S be a commutative archimedean semi-
group without idempotent ([1], [3], [5]). M.S. Putcha asked the follow-
ing question in his recent paper [4].

Is every maximal cancellative subsemigroup of S
necessarily archimedean ?

In this paper the author negatively answers this question by exhibiting
a counter example and discusses a further problem. Throughout this
paper, Z denotes the set of integers, Z+ the set of positive integers and
Z+ the set of nonnegative integers. Let S be a commutative semigroup
and let a be any element o S. Define p on S by

xpay if and only if ax-=ay orsome m, neZ+.
Then p is a congruence on S, and if S is a commutative archimedean
semigroup without idempotent, then S/pa is a group [5], [6]. Let G
--Sips. G is called the structure group of S with respect to a. A
commutative semigroup S is called power joined if, for any a, b e S,
there are m, n e Z+ such that a b.

Putcha’s question is affirmative if G is torsion. It is more strongly
stated as ollows"

Proposition 1.1. Let S be a commutative archimedean semigroup
without idempotent. If a structure group of S is torsion, then every
subsemigroup of S is archimedean.

Proof. According to [2], S is power joined if and only if G is
torsion or some a e S, equivalently or all a e S. Every subsemigroup
of S is power joined, hence archimedean.

Accordingly Putcha’s question is interesting only in the case G is
not torsion.

2. Counter example. Let G be the free abelian group of rank
r:>2, where r may be infinite, but we assume 2<r=<0 or our con-
venience. However this restriction will be easily removed later. Every
element o G will be expressed by

=(,...,,.,.) or ()
where , e Z or all i e Z/, but if r----0, only a finite number of 2,’s are
not zero. The operation is defined by (,)+ (/,)=(, +/,) and the iden-
tity is 0--(0). Define subsemigroups H and E of G by
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H--{, e G: ,>_0 for all i e Z+},
E--{, e H" u+=-0 for all i.e Z+}.

For each ,=() of G, we define [1[] by
II}l= , IIOll=O,
0

Let S=H U (O Z) be the set union of the set H and the product set
G xZ. Elements of H are denoted by 2, , those of G Z are
denoted by (, x), (, y), where , g e G, x, y e Z. Define the com-
mutative binary operation in S as follows"

(+Z, 3) , Z e HE.
’= (+Z,Z[[+ 2) e HE, e E.

(] +, +Z + 1) , Z e E.
+Z, x+2) e HE, e G..(,x)=

(+, x+lll+l) eE, zeG.
(, x). (Z, y) (2+Z, x+y+l) ,Z e G.

The subsemigroup G xZ of S is isomorphic to the direct product of G
and Z+ under addition, and hence G Z+ is archimedean. Further-
more S is an inflation [1] of G xZ determined by the map ’HoG Z
where is defined by

(2, 1) if 2 e HE()=
(, 2 ) if e E.

Therefore S is a commutative archimedean semigroup. Since GZ
has no idempotent, S has no idempotent.

Let
T H U {(2, x) 2 e HE, x 2} U {(2, 2 + x) 2 e E, x 1}.

From the definition of multiplication in S, we see that T is a subsemi-
group of S. Let L=TH. L is a cancellative ideal of T. It is easily
seen that 2. (, x) =g. (,, x) implies 2=g. The other cases of cancella-
tion of T is shown by cancellation of L. Therefore T is cancellative.

Let O: SG be the homomorphism defined by
8() if e H

0(, x)= if (2, x) e G xZ.
Note that 8 is nothing but SGo=S/po.

Let M be a cancellative subsemigroup of S properly containing T.
Suppose M is archimedean. Then O(M) is archimedean. Since the
subsemigroup H of G contains the identity 0 of G, 0(H) contains 0, and
hence O(M) contains 0. It is, therefore, a subgroup of G which contains
the subsemigroup H of G. But G=O(M) since G is generated by H.
Consider 2 e G defined by

,= {--1 i=1
0 i1.

hen (, ) e for some e . Choose e N such hat +.
e =--2+. hen e HN, so e T and
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/. (, x) ( +/, x + 2) (, II),
so that, (,, I[, [[) e M. On the other hand,

but (,, I1" II) :/=’. This contradicts cancellation of M. Hence no cancella-
rive subsemigroup which properly contains T is archimedean.

We can remove the restriction "=< 0". Let G, be the free abelian
group of rank >0. The above G is regarded as a subgroup of G,.
Let H and E be the subsemigroups of G defined as before and let S,
=H tJ (G x Z+); the operation in S, is defined in the same way as in S
except replacing G by G1. T is exactly the same as before and t," S,-G,
is similarly defined as t. If M is a cancellative subsemigroup of S,
and if TMcS, then G=t(M) and we have the same conclusion.

3. Remark. Let D be a commutative semigroup. If there is an
element a of D such that, for every b e D, a= bc for some c e D and
some m e Z+, then D is called subarchimedean. Let G be the free
abelian group of rank r, 2<=r_o. In this section, we note that the T
in Section 2 is contained in a subarchimedean maximal cancellative
subsemigroup M0 of S. Let A={ e G" . 0 for all i e Z+}, F {2 e A"
I111=>o}o

(8.1) Let X be a subsemigroup o/ A suc that FXA. The
X contains an element e G such that0 and 2+0 for all i e Z.

As the dual of A, we define B={2 e G" 2+=0 for all i e Z}. Then
Gisthe direct sum of A and B’G=A+B. Let 2eG. The projec-
tions of into A and B are denoted by 2 and 2s respectively" 2=
+s. Now define H={2 e G" 2 e F}. E and H were defined in Sec-
tion 2 and E denotes the subgroup of G generated by E. Then Hc
and H=F+B.

Let
r0={ e r" 2 =0}, F+={ e F" 2 > 0},
H0={2 e G" 2 e F0}, H+ { e G" e F+}.

F0 is a subgroup of F, and F+ is an ideal of F;HE is an ideal of H;
HE is an ideal of H.

(3.2) Let , Z e H. Then + e Ho if and only if , Z e Ho.
Further, consider the subsets Y of H+H satisfying that 2 +Z e H

or every distinct , e Y. Let C be a maximal such set Y. Such a Y
exists. For example, choose 2eH+H with 2<0, and then define
Y={m2" m e Z+}. Existence of maximal one is due to Zorn’s lemma.

Let D=H+(HUC), i.e., H+H=CUD. Now define subsets of S
as follows"

Tc {(, x)" 2 e C, x 0}, T={(2, x)" ; e D,x1},
T,={(2, x) e HoH, x]2]}.

For our convenience the sets appearing in Section 2 are denoted by



94 T. TAMURA [Vol. 52,

T1={(2, x)" e H\E, x>=2}, T2=((2, x)" 2 e E, x>-_ll211+ 1}.
Recall T=H (J T (J T. Finally we define M0 by

M0-- T U Tv U T U Tr0.
Then we can show that M0 is a maximal cancellative subsemigroup of
S and M0 is subarchimedean.

The S given in Sections 2 and 3 has 31so a maximal cncellative
subsemigroup M which is archimedean, and at the same time an ideal
o S. M={(, x)" e G, x e Z}.

The ollowing problems are raised.
Problem 1. Assume that S is a commutative archimedean semi-

group without idempotent and a structure group of S is isomorphic to
Z. Then is Putcha’s question affirmative?

Problem 2. If S is a commutative archimedean semigroup with-
out idempotent, is every maximal cancellative subsemigroup necessarily
subarchimedean? Does there exist a maximal cancellative subsemi-
group which is archimedean?
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