48. On Symmetric Structure of a Group

By Noriaki Umaya
Department of Mathematics, Faculty of General Education, Kobe University

(Comm. by Kenjiro Shoda, m. J. A., April 12, 1976)

1. Introduction. Let A be a set and S a mapping of A into the symmetric group on A. Denote the image of $a(\in A)$ under S by S_{a} or $S[a]$ and the image of $x(\in A)$ under S_{a} by $x S_{a}$. Then S is called a symmetric structure of A if the following conditions are satisfied:
(i) $a S_{a}=a$, (ii) $S_{a}^{2}=I$ (the identity), (iii) $S\left[b S_{a}\right]=S_{a} S_{b} S_{a}$. A set with a symmetric structure is called a symmetric set. A symmetric set A is called effective if $a \neq b$ implies $S_{a} \neq S_{b}$. Then group generated by $\left\{S_{a} S_{b} \mid a, b \in A\right\}$ is called the group of displacements and is denoted by $G(A)$. A symmetric structure of a finite set has been studied in [1] and [2].

Now let A be a group. Then A has symmetric structure S defined by $x S_{a}=a x^{-1} a$. The purpose of this note is to study the structure of $G(A)$ for a given group A, and we shall determine it when the center $Z(A)$ of A is trivial.

I am indebted to Professor Nagao for his help and encouragement during the preparation of this note.
2. Group of displacements. In this section we assume that A is a group and S is a symmetric structure of A defined above.

Proposition 1. A is effective if and only if there is no involution in the center of A.

Proof. Let $Z(A)$ be the center of A, and assume that $Z(A)$ contains an involution t. Then $x S_{a t}=(a t) x^{-1}(a t)=a x^{-1} a=x S_{a}$. Therefore A is not effective.

Conversely, assume that A is not effective, then there exist distinct two elements a and b in A such that $S_{a}=S_{b}$. Therefore, for any element x in A,
(1)

$$
a x^{-1} a=b x^{-1} b .
$$

Replacing x with e (the unit element) and a, we have

$$
\begin{gather*}
a^{2}=b^{2} \tag{2}\\
a=b a^{-1} b .
\end{gather*}
$$

Then $b^{-1} a=\left(a b^{-1}\right)^{-1}$ by (2), $\left(a b^{-1}\right)^{2}=e$ by (3) and $\left(b^{-1} a\right) x^{-1}\left(a b^{-1}\right)=x^{-1}$ for any x in A. Hence, $a b^{-1} \in Z(A)$ and $\left(a b^{-1}\right)^{2}=e$. Thus $Z(A)$ contains an involution.

Let L_{a} and R_{a} be permutations on A such that

$$
L_{a}: x \rightarrow a x
$$

$$
R_{a}: x \rightarrow x a .
$$

Then $\mathfrak{R}=\left\{L_{a} \mid \alpha \in A\right\}$ and $\mathfrak{R}=\left\{R_{a} \mid \alpha \in A\right\}$ are permutation groups on A. \mathfrak{R} is anti-isomorphic to A, \Re is isomorphic to A and \mathbb{R} and \Re commute elementwise. If $Z(A)=\{e\}$, then the permutation group $\langle\mathfrak{R}, \mathfrak{R}\rangle=\mathfrak{R} \mathfrak{R}$ on A which is generated by \mathbb{R} and \Re, is isomorphic to the direct product of Ω and \mathfrak{R}.

Proposition 2. $G(A)$ is generated by $\left\{L_{a} R_{a} \mid a \in A\right\}$.
Proof. Since $x\left(S_{a} S_{b}\right)=b a^{-1} x a^{-1} b=x\left(L_{a}^{-1} R_{a}^{-1}\right)\left(L_{b} R_{b}\right), G(A) \subseteq\left\langle L_{a} R_{a}\right.$ $|a \in A\rangle$. Conversely, $x\left(L_{a} R_{a}\right)=a x a=x\left(S_{e} S_{a}\right)$, and hence $\left\langle L_{a} R_{a} \mid a \in A\right\rangle$ $\subseteq G(A)$.

Corollary. If $Z(A)=\{e\}$, then $G \subseteq \mathbb{Z} \times \mathfrak{R}$.
Let H be the full set of an element h which satisfies the following:
(*) There exist some elements $a_{1}, a_{2}, \cdots, a_{r}$ in A such that $h=a_{1} a_{2} \cdots a_{r}$ and $a_{r} a_{r-1} \cdots a_{1}=e$.

Proposition 3. If $Z(A)=\{e\}$, then we have the following:
(i) $H=A^{\prime}$ (the commutator subgroup of A).
(ii) $G(A) \cap \mathfrak{R}=\left\{L_{h} \mid h \in H\right\}$.
(iii) $G(A) \cap \Re=\left\{R_{h} \mid h \in H\right\}$.

Proof. $Z(A)=\{e\}$ implies that A is effective and $\langle\mathfrak{R}, \mathfrak{R}\rangle=\mathfrak{R} \times \mathfrak{R}$.
(i) It is easily seen that H is a normal subgroup of A. For any elements a and b in $A,[a, b]=a^{-1} b^{-1}(a b)$ and $(a b) b^{-1} a^{-1}=e$. Hence A^{\prime} $\subseteq H$. Conversely, let \bar{a} be a coset of A^{\prime} in A which contains a, then for any h in H

$$
\bar{h}=\bar{a}_{1} \bar{a}_{2} \cdots \bar{a}_{r}=\bar{a}_{r} \bar{a}_{r-1} \cdots \bar{a}_{1}=\bar{e} .
$$

It follows that $H \subseteq A^{\prime}$.
(ii) If $P \in G(A) \cap \mathfrak{R}$, then there exists $b_{1}, b_{2}, \cdots, b_{s}$ in A such that

$$
P=\left(L_{b_{1}} R_{b_{1}}\right)\left(L_{b_{2}} R_{b_{2}}\right) \cdots\left(L_{b_{s}} R_{b_{s}}\right) .
$$

Hence $\left(L_{b_{s} b_{s}-1 \ldots b_{1}}\right)\left(R_{b_{1} b_{2} \ldots b_{s}}\right)$ is in \mathfrak{R}. It follows that $R_{b_{1} b_{2} \ldots b_{s}}$ is the identity permutation on A. Therefore, we have

$$
P=L_{b_{s} b_{s-1} \cdots b_{1}} \text { and } b_{1} b_{2} \cdots b_{s}=e .
$$

By the same argument in (ii), we have (iii).
Proposition 4. If $Z(A)=\{e\}$, then

$$
G(A)=\left\{L_{h} L_{a} R_{h^{\prime}} R_{a} \mid a \in A, h, h^{\prime} \in H\right\} .
$$

Proof. By (ii) and (iii) of Proposition 3, we have

$$
\left\{L_{h} L_{a} R_{h^{\prime}} R_{a} \mid a \in A, h, h^{\prime} \in H\right\} \subseteq G(A) .
$$

Conversely, for any element P in $G(A)$, there exist some elements $b_{1}, b_{2}, \cdots, b_{s}$ in A such that

$$
P=\left(L_{b_{s} b_{s-1} \ldots b_{1}}\right)\left(R_{b_{1} b_{2} \ldots b_{s}}\right) .
$$

By (i) of Proposition 3, there exists some element h in H such that $b_{s} b_{s-1} \cdots b_{1}=b_{1} b_{2} \cdots b_{s} h$, hence

$$
P=L_{h}\left(L_{b_{1} b_{2} \ldots b_{s}}\right)\left(R_{b_{1} b_{2} \ldots b_{s}}\right)
$$

It follows that $G(A) \subseteq\left\{L_{h} L_{a} R_{h^{\prime}} R_{a} \mid a \in A, h, h^{\prime} \in H\right\}$.

Theorem 1. If $Z(A)=\{e\}$ and let N be a $G(A)$-orbit in A which contains e, then N is a normal subgroup of A and A / N is an elementary abelian group of exponent 2.

Proof. By Proposition 4, x is contained in N if and only if $x=a h a$ for some a in A and h in H. Therefore, by (i) of Proposition 3 ,

$$
\begin{aligned}
N & =\{a h a \mid a \in A, h \in H\}=\bigcup_{a \in A} a H a \\
& =\bigcup_{a \in A} a A^{\prime} a=\bigcup_{a \in A} a^{2} A^{\prime} .
\end{aligned}
$$

It follows that N is a normal subgroup of A and for any element a in A, a^{2} is contained in N.

We denote $G(A) \cap \mathfrak{R}$ and $G(A) \cap \Re$ by $\bar{\Omega}$ and $\bar{\Re}$ respectively.
Theorem 2. If $Z(A)=\{e\}$, then

$$
G(A) / \bar{\Omega} \times \bar{\Re}=A / A^{\prime}
$$

Proof. By Proposition 4, for any element P in A^{\prime} such that $P=L_{h} L_{a} R_{h^{\prime}} R_{a}$. Let ϕ be a mapping of $G(A)$ into A / A^{\prime} such that

$$
\phi: P=L_{h} L_{a} R_{h^{\prime}} R_{a} \rightarrow a A^{\prime} .
$$

Then it is easily seen that ϕ induces an isomorphism of $G(A) / \overline{\mathbb{R}} \times \bar{\Re}$ onto A / A^{\prime}.

From Proposition 3 and Theorem 2, we have the following, Corollary. If $Z(A)=\{e\}$ and $A=A^{\prime}$, then $G(A)=\mathfrak{R} \times \Re$.

References

[1] N. Nobusawa: On symmetric structure of a finite set. Osaka J. Math., 11, 569-575 (1974).
[2] M. Kano, H. Nagao, and N. Nobusawa: On finite homogeneous symmetric sets (to appear).

