48. On Symmetric Structure of a Group

By Noriaki UMAYA

Department of Mathematics, Faculty of General Education, Kobe University

(Comm. by Kenjiro SHODA, M. J. A., April 12, 1976)

1. Introduction. Let A be a set and S a mapping of A into the symmetric group on A. Denote the image of $a (\in A)$ under S by S_a or S[a] and the image of $x(\in A)$ under S_a by xS_a . Then S is called a symmetric structure of A if the following conditions are satisfied:

(i) $aS_a = a$, (ii) $S_a^2 = I$ (the identity), (iii) $S[bS_a] = S_a S_b S_a$. A set with a symmetric structure is called a symmetric set. A symmetric set A is called *effective* if $a \neq b$ implies $S_a \neq S_b$. Then group generated by $\{S_a S_b | a, b \in A\}$ is called the group of displacements and is denoted by G(A). A symmetric structure of a finite set has been studied in [1] and [2].

Now let A be a group. Then A has symmetric structure S defined by $xS_a = ax^{-1}a$. The purpose of this note is to study the structure of G(A) for a given group A, and we shall determine it when the center Z(A) of A is trivial.

I am indebted to Professor Nagao for his help and encouragement during the preparation of this note.

2. Group of displacements. In this section we assume that A is a group and S is a symmetric structure of A defined above.

Proposition 1. A is effective if and only if there is no involution in the center of A.

Proof. Let Z(A) be the center of A, and assume that Z(A) contains an involution t. Then $xS_{at} = (at)x^{-1}(at) = ax^{-1}a = xS_a$. Therefore A is not effective.

Conversely, assume that A is not effective, then there exist distinct two elements a and b in A such that $S_a = S_b$. Therefore, for any element x in A,

(1)
$$ax^{-1}a = bx^{-1}b$$
.
Replacing a with a (the unit element) and a we h

Replacing x with e (the unit element) and a, we have

 $(2) a^2 = b^2$

 $(3) a=ba^{-1}b.$

Then $b^{-1}a = (ab^{-1})^{-1}$ by (2), $(ab^{-1})^2 = e$ by (3) and $(b^{-1}a)x^{-1}(ab^{-1}) = x^{-1}$ for any x in A. Hence, $ab^{-1} \in Z(A)$ and $(ab^{-1})^2 = e$. Thus Z(A) contains an involution.

Let L_a and R_a be permutations on A such that

$$L_a: x \rightarrow ax$$
,

$$R_a: x \rightarrow xa.$$

Then $\mathfrak{L} = \{L_a \mid a \in A\}$ and $\mathfrak{R} = \{R_a \mid a \in A\}$ are permutation groups on A. \mathfrak{L} is anti-isomorphic to A, \mathfrak{R} is isomorphic to A and \mathfrak{L} and \mathfrak{R} commute elementwise. If $Z(A) = \{e\}$, then the permutation group $\langle \mathfrak{L}, \mathfrak{R} \rangle = \mathfrak{L}\mathfrak{R}$ on A which is generated by \mathfrak{L} and \mathfrak{R} , is isomorphic to the direct product of \mathfrak{L} and \mathfrak{R} .

Proposition 2. G(A) is generated by $\{L_aR_a | a \in A\}$.

Proof. Since $x(S_aS_b) = ba^{-1}xa^{-1}b = x(L_a^{-1}R_a^{-1})(L_bR_b)$, $G(A) \subseteq \langle L_aR_a | a \in A \rangle$. $|a \in A \rangle$. Conversely, $x(L_aR_a) = axa = x(S_eS_a)$, and hence $\langle L_aR_a | a \in A \rangle$ $\subseteq G(A)$.

Corollary. If $Z(A) = \{e\}$, then $G \subseteq \mathfrak{L} \times \mathfrak{R}$.

Let H be the full set of an element h which satisfies the following:

(*) There exist some elements a_1, a_2, \dots, a_r in A such that $h = a_1 a_2 \cdots a_r$ and $a_r a_{r-1} \cdots a_1 = e$.

Proposition 3. If $Z(A) = \{e\}$, then we have the following:

(i) H=A' (the commutator subgroup of A).

(ii) $G(A) \cap \mathfrak{L} = \{L_h \mid h \in H\}.$

(iii) $G(A) \cap \mathfrak{R} = \{R_h \mid h \in H\}.$

Proof. $Z(A) = \{e\}$ implies that A is effective and $\langle \mathfrak{L}, \mathfrak{R} \rangle = \mathfrak{L} \times \mathfrak{R}$.

(i) It is easily seen that H is a normal subgroup of A. For any elements a and b in A, $[a, b] = a^{-1}b^{-1}(ab)$ and $(ab)b^{-1}a^{-1} = e$. Hence $A' \subseteq H$. Conversely, let \overline{a} be a coset of A' in A which contains a, then for any h in H

 $\overline{h} = \overline{a}_1 \overline{a}_2 \cdots \overline{a}_r = \overline{a}_r \overline{a}_{r-1} \cdots \overline{a}_1 = \overline{e}.$

It follows that $H \subseteq A'$.

(ii) If $P \in G(A) \cap \mathfrak{D}$, then there exists b_1, b_2, \dots, b_s in A such that $P = (L_{b_1}R_{b_1})(L_{b_2}R_{b_2})\cdots(L_{b_s}R_{b_s}).$

Hence $(L_{b_sb_{s-1}\cdots b_1})(R_{b_1b_2\cdots b_s})$ is in \mathfrak{L} . It follows that $R_{b_1b_2\cdots b_s}$ is the identity permutation on A. Therefore, we have

 $P = L_{b_s b_{s-1} \cdots b_1} \text{ and } b_1 b_2 \cdots b_s = e.$

By the same argument in (ii), we have (iii). Proposition 4. If $Z(A) = \{e\}$, then

 $G(A) = \{L_h L_a R_{h'} R_a \mid a \in A, h, h' \in H\}.$

Proof. By (ii) and (iii) of Proposition 3, we have

$$\{L_h L_a R_{h'} R_a \mid a \in A, h, h' \in H\} \subseteq G(A).$$

Conversely, for any element P in G(A), there exist some elements b_1, b_2, \dots, b_s in A such that

 $P = (L_{b_s b_{s-1} \dots b_1})(R_{b_1 b_2 \dots b_s}).$

By (i) of Proposition 3, there exists some element h in H such that $b_s b_{s-1} \cdots b_1 = b_1 b_2 \cdots b_s h$, hence

 $P = L_h(L_{b_1 b_2 \dots b_s})(R_{b_1 b_2 \dots b_s}).$ It follows that $G(A) \subseteq \{L_h L_a R_h, R_a \mid a \in A, h, h' \in H\}.$ Theorem 1. If $Z(A) = \{e\}$ and let N be a G(A)-orbit in A which contains e, then N is a normal subgroup of A and A/N is an elementary abelian group of exponent 2.

Proof. By Proposition 4, x is contained in N if and only if x=aha for some a in A and h in H. Therefore, by (i) of Proposition 3,

$$N = \{aha \mid a \in A, h \in H\} = \bigcup_{a \in A} aHa$$
$$= \bigcup_{a \in A} aA'a = \bigcup_{a \in A} a^2A'.$$

It follows that N is a normal subgroup of A and for any element a in A, a^2 is contained in N.

We denote $G(A) \cap \mathfrak{L}$ and $G(A) \cap \mathfrak{R}$ by $\overline{\mathfrak{L}}$ and \mathfrak{R} respectively. Theorem 2. If $Z(A) = \{e\}$, then

 $G(A)/\overline{\mathfrak{Q}}\times\overline{\mathfrak{R}}=A/A'.$

Proof. By Proposition 4, for any element P in A' such that $P = L_h L_a R_{h'} R_a$. Let ϕ be a mapping of G(A) into A/A' such that $\phi: P = L_h L_a R_{h'} R_a \rightarrow a A'$.

Then it is easily seen that ϕ induces an isomorphism of $G(A)/\overline{\mathfrak{L}} \times \mathfrak{R}$ onto A/A'.

From Proposition 3 and Theorem 2, we have the following, Corollary. If $Z(A) = \{e\}$ and A = A', then $G(A) = \mathfrak{L} \times \mathfrak{R}$.

References

- N. Nobusawa: On symmetric structure of a finite set. Osaka J. Math., 11, 569-575 (1974).
- [2] M. Kano, H. Nagao, and N. Nobusawa: On finite homogeneous symmetric sets (to appear).