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47. An Alternate Proof of a Transfer Theorem
without using Transfer

By Tomoyuki YOSHIDA

(Comm. by Kenjiro SHODA, M. J. A., April 12, 1976)

In the paper [1] by the same author, he proved

Theorem A. If a Sylow p-subgroup P of a finite group G has no
quotient group isomorphic to the wreath product Z, Z,, where Z, is
the cyclic group of order p, then PNG' =P N N4P)'.

The purpose of this paper is to give a primitive proof of a parti-
cular case of this theorem. Namely, we shall prove

Theorem B. If a Sylow 2-subgroup P of a finite group G has no
quotient group isomorphic to the dihedral group D, of order 8, then
PNG'G'=PNN:N’, where N=N4P). In particular, if G has no sub-
group of index 2, then so does N.

Most of the notation is standard. Let G be a finite group. Then
G’ denotes the commutator group of G. For XCG, <(X) is the sub-
group generated by X. Weset G*G'=<{¢% G’ |ge G>. We write HJG
if H is a normal subgroup of G. For subgroups H, K of G, the nota-
tion K\H denotes the set {Kh|h e H}. Clearly, every element of H
induces a permutation on K\H. We write H<G if H is a proper sub-
group of G.

The following lemma is essential to the proof of Theorem B.

Lemma. Let P be a 2-group, K<S<P and xe P. Assume the
following :

(@) [S:K|[=2;

(b) ForanyueP,{&»*»NSCK;

(¢) The element x acts on the set K\P as an odd permutation.
Then P has a quotient group isomorphic to Ds.

Proof. We shall argue by induction on |P: S|. Let R be a sub-
group of P such that |[R: S|=2. Suppose K<R. Since z acts on K\P
as an odd permutation, we have that there is u ¢ P such that x acts as
an odd permutation on the set K\Ru{z>. Replacing & with uau™*, we
may assume that u=1. If z fixes an element of K\R{x), then z acts
trivially on K\R{x>, as K<|R, a contradiction. Thus z acts semi-
regularly on K\R{«x>, and so the number of the {z)>-orbits of K\R{x)
is1or 3. It follows easily from K<|R that K\R{(x)>=K\K<{x>. Thus
[Ke>NR:<{x>NK|=4. This means that 2/ ¢ S—K for some even j.
This contradicts the assumption of this lemma. Hence we proved
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that K is not normal in R.

Let re R—S and N=KNK". Then N<{R and R/N=D; and S/N
=Z7:. We may assume that e N. Let L be a maximal subgroup of
R such that N<L=+S and L/N=Z3;. We shall first show (&*>* NR<L.
Let yea®»*NR,uecP. Then y*e<{x*>*NS<K by the assumption of
this lemma. Since y” e (&*)*"N R, we have similarly that y* ¢ {x?>*"
NS<K. Thus y*’¢ KNK"=N. If yeS, then it follows from the as-
sumption of this lemma that ye KNK"=N<L. Ifye¢S, thenyelL,
as R/N=D,. Hence we have that (z*>* N R<L for any u ¢ P.

Next, we will show that « acts on the set L\P as an odd permuta-
tion. Since x acts on K\P as an odd permutation, it will suffice to
show that for each u € P, the following are equivalent:

(i) = acts as an odd permutation on L\Rulz);

(il) « acts as an odd permutation on K\Rudx)>.

If necessarily replacing x with uaxu™, we may assume that u=1. Let
ke K—L and s=[r,kle LNS—N. Then R=L+Lk.

Suppose Rx=+R. If Lz’=Lk for some j, then Rx/=R, and so
2’eR. As x¢R,j is even. Thus «?/¢ L and so Lx/=L=+Lk, a con-
tradiction. Hence L{x>#Lk{x>. In particular, x is represented on
L\R{x) as the product of two nontrivial cyclic permutation, and hence
x acts on L\R{x)> as an even permutation. If Kax’=Ks for some j,
then Rx/=R, so j is even. Thus 2’/ ¢ K by the assumption of this
lemma, a contradiction. Thus K{x)#Ks{(x>. Since rK=Krs, we
conclude that = acts an even permutation on K\R{x>. Thus in this
case, neither (i) nor (ii) holds.

Suppose next Rx=R. Then xe R. Since 2?c S<R, we have that

2?e N by the assumption of this lemma, and so x€ SUL. Thus (i) is
equivalent to
ay x e L—S=N{s>k.
If xe Nk, then 2: K—»K,Ks—Ks, Kr<~Krs. 1If xe Nsk, then z: K
~Ks, Kr—Kr, Krs—Krs. Thus if (i) holds, then (ii) also holds. As-
sume conversely that (ii) holds. Then x ¢ N and x fixes an element of
K\R, and so ¢ KUK"—N=N{s)k. Hence (i)’ and also (i) hold. We
proved that (i) and (ii) are equivalent in this case.

We can now prove this lemma. We show that (x®>*NR<L for
any u € P and that « acts on the set L\P as an odd permutation. So
if R+ P, then we can apply induction and hence P has a quotient group
isomorphic to D;. If R=P, then we already proved that R/N=P/N
=D,. The lemma is proved.

Proof of Theorem B. Let G, P, N be as in the theorem. Suppose
the theorem is false. Then PNG*G’'PNN:N’. Take an element x
of PNG*G’'—N?N’ of minimal order. There is a subgroup M of
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N=N4(P) of index 2 such that x ¢ M. As xe G*G’, the element x acts
on the set M\G as an even permutation. Since x: MMx=N—-M,
there is g € G—N such that x acts on M\NgP as an odd permutation.
As M<N, we see that the permutation representations (P, M\MgP)
and (P, M\MxgP) are equivalent. Since z acts on M\NgP as an odd
permutation, we have that MgP=MxzgP=NgP. Set S=PNN‘ and
K=PNM’. AsM'P=N'P,wehavethat|S: K|=2. Asgg N=NuP),
S<P. 1If ueP, then by the minimality of the order of x, we have
that (x>>***NP<M, and so <2®>*NS<K. Furthermore, the permuta-
tion repreaentations (P, M\MgP) and (P, K\P) are equivalent, so x acts
on K\P as an odd permutation. By Lemma 1, we have that P has a
quotient group isomorphic to D,, contrary to the assumption of the
theorem about P. The theorem is proved.

Reference

[1] T. Yoshida: Character-theoretic transfers (to appear).



