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An Alternate Proof o a Transfer Theorem
without using Transfer

By Tomoyuki YOSHIDA

(Comm. by Kenjiro SHODA, M. J. A., April 12, 1976)

In the paper [1] by the same author, he proved

Theorem A. If a Sylow p-subgroup P of a finite group G has no
quotient group isomorphic to the wreath product Zp Zp, where Z is
the cyclic group of order p, then P G’-=P CINo(P)’.

The purpose of this paper is to give a primitive proo of a parti-
cular case of this theorem. Namely, we shall prove

Theorem B. If a Sylow 2-subgroup P of a finite group G has no
quotient group isomorphic to the dihedral group D8 of order 8, then
P GG’--P N2N’, where N=No(P). In particular, if G has no sub-
group of index 2, then so does N.

Most of the notation is standard. Let Gbe a finite group. Then
G’ denotes the commutator group ot G. For XG, (X} is the sub-
group generated by X. We set GG’=(g, G’lg e G}. We write H<G
if H is a normal subgroup o G. For subgroups H, K o G, the nota-
tion K\H denotes the set {Khlh e H}. Clearly, every element of H
induces a permutation on K\H. We write H G i H is proper sub-
group o G.

The following lemma is essential to the proo of Theorem B.
Lemma. Let P be a 2-group, KSP and xeP. Assume the

following"
(a) IS" KI--2;
(b) For any u e P,
(c) The element x acts on the set K\P as an odd permutation.

Then P has a quotient group isomorphic to Ds.
Proof. We shall argue by induction on IP" SI. Let R be a sub-

group o P such that IR" S1=2. Suppose K<JR. Since x cts on K\P
as an odd permutation, we have that there is u e P such that x acts as
an odd permutation on the set K\Ru(x}. Replacing x with uxu-, we
may assume that u= 1. If x fixes an element o K\R(x}, then x acts
trivially on K\R(x}, as K<R, contradiction. Thus x acts semi-
regularly on K\R(x}, and so the number of the (x}-orbits of K\R(x}
is 1 or 3. It ollows easily rom K<R that K\R(x}=K\K(x}. Thus
I(x}OR" (x}KI----4. This means that xeS--K 2or some even ].
This contradicts the assumption of this lemma. Hence we proved
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that K is not normal in R.
Let r e R-S and N-K K. Then N<JR and R/N Ds and S/N

Z. We may assume that r e N. Let L be a maximal subgroup of
R such that NL=/=S and L/N-Z. We shall first show (xR_L.
Let ye(xVIR, ueP. Then ye(xVIS_K by the assumption o
this lemma. Since ye (x) R, we have similarly that
S_K. Thus y e K K--N. If y e S, then it ollows rom the as-

sumption o this lemma that y e K gl K--N_L. I y e S, then y e L,
as R/N-Ds. Hence we have that (xVIR<_L for any ueP.

Next, we will show that x acts on the set L\P as an odd permuta-
tion. Since x acts on K\P as an odd permutation, it will suffice to
show that for each u e P, the following are equivalent"

(i) x acts as an odd permutation on L\Ru(x};
(ii) x acts as an odd permutation on K\Ru(x}.

If necessarily replacing x with uxu-, we may assume that u= 1. Let
k e K--L and s= [r, k] e L VI S--N. Then R L+ Lk.

Suppose Rx=/=R. If Lx=Lk for some ], then Rx=R, and so
xeR. As xeR,] is even. Thus xeL and soLx=L=/=Lk, acon-
tradiction. Hence L(x}:/=Lk(x}. In particular, x is represented on
L\R(x} as the product of two nontrivial cyclic permutation, and hence
x acts on L\R(x} as an even permutation. If Kx=Ks for some ],
then Rx=R, so ] is even. Thus x e K by the assumption of this
lemma, a contradiction. Thus K(x=/=Ks(x. Since rK----Krs, we
conclude that x acts an even permutation on K\R(x}. Thus in this
case, neither (i) nor (ii) holds.

Suppose next Rx--R. Then x e R. Since x e S<:IR, we have that
xe N by the assumption of this lemma, and so x e S [J L. Thus (i) is
equivalent to
(i)’ x e L--S=N(sk.
If x e Nk, then x" KK, Ks-oKs, Kr->Krs. I x e Nsk, then x" K
-Ks, KrKr, KrsKrs. Thus if (i) holds, then (ii) also holds. As-
sume conversely that (ii) holds. Then x e N and x fixes an element of
K\R, and so x e KiJK--N=N(s}k. Hence (i)’ and also (i) hold. We
proved that (i) and (ii) are equivalent in this case.

We can now prove this lemma. We show that (xR_L
any u e P and that x acts on the set L\P as an odd permutation. So
if R :/: P, then we can apply induction and hence P has a quotient group
isomorphic to Ds. If R-- P, then we already proved that R/N--P/N
-Ds. The lemma is proved.

Proof of Theorem B. Let G, P, N be as in the theorem. Suppose
the theorem is false. Then P GG’=/=P NN’. Take an element x
of PGG’-NN of minimal order. There is a subgroup M of
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N=N(P) of index 2 such that x e M. As x e GG’, the element x acts
on the set M\G as an even permutation. Since x" M-Mx=N--M,
there is g e G-N such that x acts on M\NgP as an odd permutation.
As M<N, we see that the permutation representations (P,M\MgP)
nd (P, M\MxgP) are equivalent. Since x acts on M\NgP as an odd
permutation, we have that MgP=MxgP--NgP. Set S=P VI N and
K--PM. AsMP--NP, wehavethatlS" KI=2. Asg eN=N(P),
SP. If u e P, then by the minimality of the order of x, we have
that (x}q-P_M, and so (x}VIS<_K. Furthermore, the permuta-
tion repreaentations (P, M\MgP) and (P, K\P) are equivalent, so x acts
on K\P as an odd permutation. By Lemma 1, we have that P has a
quotient group isomorphic to Ds, contrary to the assumption of the
theorem about P. The theorem is proved.
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