95. Solution of R. Telgársky's Problem*

By Yukinobu YAJIMA
Department of Mathematics, University of Tsukuba
(Communicated by Kenjiro Shoda, M. J. A., Sept. 13, 1976)

1. Introduction. In [4], R. Telgársky showed that a paracompact space X has a closure-preserving cover by compact sets if X has two order locally finite covers $\{U_\alpha:\alpha\in A\}$ and $\{C_\alpha:\alpha\in A\}$ such that C_α is compact and U_α is an open neighborhood of C_α for each $\alpha\in A$. Order locally finite covers were introduced by Y. Katuta [2]. In the same paper [4], R. Telgársky showed that a paracompact space with two order locally finite covers which are described above is totally paracompact and that a paracompact space with a closure-preserving cover by finite sets is totally paracompact. In these connections, he raised the question of whether or not a paracompact space with a closure-preserving cover by compact sets is totally paracompact ([4] Problem 2). In the present paper, we shall give an affirmative answer to this problem.

All spaces are assumed to be Hausdorff spaces. N denotes the set of all natural numbers.

A space X is said to be *totally paracompact* [1] if each open basis of X contains a locally finite cover of X. A family \mathfrak{F} of subsets of X is said to be σ -closure-preserving if \mathfrak{F} is the countable union of families $\{\mathfrak{F}_n\}_{n=1}^{\infty}$ such that \mathfrak{F}_n is closure-preserving for each $n \in N$.

Theorem 1. If X is a paracompact space with a σ -closure-preserving cover by compact sets, then X is totally paracompact.

Corollary 2. If X is a paracompact space with a closure-preserving cover by compact sets, then X is totally paracompact.

Corollary 2 is an immediate consequence of Theorem 1.

2. Proof of Theorem 1. When $\mathfrak U$ is a family of subsets of a space X, let $\mathfrak U^*=\cup\{U\colon U\in\mathfrak U\}$. Let $\mathfrak F$ be a closure-preserving family consisting of compact sets of a space X. For each $x\in X$, K(x) is defined to be $X-\cup\{F\in\mathfrak F\colon x\not\in F\}$.

When A is a closed subset of X, let

 $M_{\mathfrak{F}}(A) = \{x : x \in \mathfrak{F}^* \cap A, K(x) \text{ is not properly contained in any } K(x') \text{ for } x' \in A\}.$

We need two lemmas to prove Theorem 1.

Lemma 3 (Potoczny [3]). Let A be a closed subset of a space X

^{*)} Dedicated to Professor Kiiti Morita for his 60th birthday.

and let \mathcal{F} be a closure-preserving family by compact sets. Then $M_{\mathcal{F}}(A)$ can be decomposed into a discrete family by compact sets.

Lemma 4 (Potoczny [3]). Let \mathfrak{F} be a closure-preserving family by compact sets of a space X, and let $\{V(n): n \in N\}$ be a sequence of open sets of X such that $M_{\mathfrak{F}}(\mathfrak{F}^*) \subset V(1)$ and $M_{\mathfrak{F}}(\mathfrak{F}^*-\{V(i): i=1, \dots, n\}) \subset V(n+1)$. Then $\mathfrak{F}^* \subset \bigcup \{V(n): n \in N\}$.

Proof of Theorem 1. Let $\mathfrak{F}=\bigcup_{n=1}^{\infty}\mathfrak{F}_n$ be a cover of X by compact sets such that \mathfrak{F}_n is closure-preserving for each $n\in N$. Let \mathfrak{B} be an open basis of X. We first construct a sequence of subfamilies $\{\mathfrak{B}_n\}_{n=0}^{\infty}$ of \mathfrak{B} and a sequence of open sets $\{U_n\}_{n=0}^{\infty}$ satisfying the following conditions:

- (1) Each \mathfrak{B}_n is locally finite in X.
- (2) $M_{\mathfrak{F}_k}(\mathfrak{F}_k^* \bigcup_{i=1}^{n-1} \mathfrak{B}_i^*) \subset \mathfrak{B}_n^*$ for each $k=1, \dots, n$.
- $\begin{array}{ll} \text{(3)} & L_n \subset U_n \subset \text{Cl } U_n \subset \bigcup_{i=1}^{n-1} \mathfrak{B}_i^{\sharp}, \\ & \text{where } L_n = \bigcup \{F \in \bigcup_{i=1}^n \mathfrak{F}_i \colon F \subset \bigcup_{i=1}^{n-1} \mathfrak{B}_i^{\sharp}\}. \end{array}$
- (4) Cl $U_n \cap \mathfrak{B}_n^* = \emptyset$.
- (5) Cl $U_n \subset U_{n+1}$.

Let $\mathfrak{B}_0 = \{\emptyset\}$ and $U_0 = \emptyset$. Assume that $\mathfrak{B}_0, \cdots, \mathfrak{B}_{n-1}$ and U_0, \cdots, U_{n-1} have already been constructed. Since $\bigcup_{i=1}^n \mathfrak{F}_i$ is closure-preserving, L_n is closed in X. Since $\operatorname{Cl} U_{n-1} \subset \bigcup_{i=1}^{n-1} \mathfrak{B}_i^*$ and X is normal, we can choose an open sets U_n of X such that $\operatorname{Cl} U_{n-1} \cup L_n \subset U_n \subset \operatorname{Cl} U_n \subset \bigcup_{i=1}^{n-1} \mathfrak{B}_i^*$. By Lemma 3, $M_{\mathfrak{F}_k}(\mathfrak{F}_k^* - \bigcup_{i=1}^{n-1} \mathfrak{B}_i^*)$ can be decomposed into a discrete family $\{C_{\lambda} \colon \lambda \in \Lambda_k\}$ by compact sets for $k=1, \cdots, n$. Since X is collectionwise normal and each C_{λ} is compact, we can choose open families

 $\mathfrak{B}_{n,k} = \{B_{\lambda}^{k}(j) : j = 1, \dots, n(\lambda), \lambda \in \Lambda_{k}\}$ for $k = 1, \dots, n$ satisfying the following conditions:

- (6) $C_{i} \subset \bigcup_{j=1}^{n(\lambda)} B_{i}^{k}(j)$ for each $\lambda \in \Lambda_{k}$.
- (7) $\{\bigcup_{j=1}^{n(\lambda)} B_{\lambda}^{k}(j) : \lambda \in \Lambda_{k}\}$ is a discrete family.
- (8) Each $\mathfrak{B}_{n,k}$ is a subfamily of \mathfrak{B} .
- (9) $\mathfrak{B}_{n,k}^* \cap \operatorname{Cl} U_n = \emptyset$.

Put $\mathfrak{B}_n = \bigcup_{k=1}^n \mathfrak{B}_{n,k}$. It is easy to prove that \mathfrak{B}_n and U_n satisfy the conditions (1)–(5). Put $\tilde{\mathfrak{B}} = \bigcup_{n=1}^\infty \mathfrak{B}_n$. By (2) and Lemma 4, $\mathfrak{F}_k^* \subset \tilde{\mathfrak{B}}^*$ for each $k \in N$. Hence $\tilde{\mathfrak{B}}$ is an open cover of X. Let $x \in X$. There are $i_0 \in N$ and $F_0 \in \mathfrak{F}_{i_0}$ such that $x \in F_0$. Since F_0 is compact, we can choose $n_0 \in N$ such that $n_0 \geq i_0$ and $F_0 \subset \bigcup_{i=1}^{n_0-1} \mathfrak{B}_i^*$. Then we have $x \in F_0 \subset L_{n_0} \subset U_{n_0}$. By (4) and (5), $\mathfrak{B}_n^* \cap U_{n_0} = \emptyset$ for each $n \geq n_0$. Since $\bigcup_{i=1}^{n_0-1} \mathfrak{B}_i$ is locally finite in X, $\tilde{\mathfrak{B}}$ is locally finite at x. Therefore $\tilde{\mathfrak{B}}$ is a locally finite cover of X such that $\tilde{\mathfrak{B}} \subset \mathfrak{B}$. The proof is complete.

References

- [1] R. M. Ford: Basis Properties in Dimension Theory. Doctoral Dissertation, Auburn University. Auburn, Ala. (1963).
- [2] Y. Katuta: A theorem on paracompactness of product spaces. Proc. Japan Acad., 43, 615-618 (1967).
- [3] H. B. Potoczny: Closure-preserving families of compact sets. General Topology and Appl., 3, 243-248 (1973).
- [4] R. Telgársky: Closure-preserving covers. Fund. Math., 75, 165-175 (1974).