36. On the Existence of Invariant Functions for Markov Representations of Amenable Semigroups

By Kôkichi SAKAI

College of Liberal Arts, Kagoshima University

(Communicated by Kôsaku YOSIDA, M. J. A., March 12, 1977)

§ 0. Introduction. Let (X, Σ, m) be a σ -finite measure space and S be a left amenable semigroup. By L^1 and L^{∞} we denote the usual Banach spaces $L^1(X, \Sigma, m)$ and $L^{\infty}(X, \Sigma, m)$ respectively. Let $T = \{T_s : s \in S\}$ be a representation of S by positive linear contractions on L^1 . For the sake of brevity such T is called a *Markov representation* of S on L^1 . By co(T) we denote the convex hull of $\{T_s : s \in S\}$ and by $\overline{co}(T)$ the closure of co(T) with respect to the operator norm topology. For this T we consider the following conditions:

(A) There exists a strictly positive function f in L^1 such that $T_s f$ = f for all $s \in S$.

(B) Every operator in $\overline{co}(T)$ is conservative.

(C) T_s is conservative for every $s \in S$.

Then it is obvious that the condition (A) implies (B) and (C). In this paper we shall prove the next theorems.

Theorem 1. For any Markov representation $T = \{T_s; s \in S\}$ of a left amenable semigroup S on L^1 , the conditions (A) and (B) are mutually equivalent.

Theorem 2. Let S be an extremely left amenable semigroup. Then for any Markov representation $T = \{T_s; s \in S\}$ of S on L^1 with the following property:

(1) $T_s^*(gh) = T_s^*(g)T_s^*(h)$ for any $g, h \in L^{\infty}$ and $s \in S$, the conditions (A) and (C) are mutually equivalent.

Theorem 1 is proved by Brunel [1] for the case when S is the additive semigroup of positive integers, and by Horowitz [3] for the case when S is commutative. In the author's paper [4] we shall show that the main theorem in [3] is also valid for the case of left amenable semigroups of Markov operators.

§1. Proof of Theorem 1. Let S and $T = \{T_s; s \in S\}$ be as in Theorem 1. By L(T) we denote the closed linear subspace of L^{∞} generated by $\{T_s^*h - h; s \in S, h \in L^{\infty}\}$ and put $L^+(T) = \{h \in L(T); h \ge 0\}$. Then the next lemma is well-known (e.g., see Granirer [2, Theorem 5]).

Lemma 3. For any $f \in L^{\infty}$ the following equality holds: (2) $\inf \{ \|f-h\|_{\infty}; h \in L(T) \} = \inf \{ \|Q^*f\|_{\infty}; Q \in co(T) \}.$ Especially if S is extremely left amenable, then No. 3] Markov Representations of Amenable Semigroups

(3) $\inf \{ \|f - h\|_{\infty}; h \in L(T) \} = \inf \{ \|T_s^* f\|_{\infty}; s \in S \}.$

Combining with Lemma 3 and Theorem 1(5) in Takahashi [5], we have

Lemma 4. For any Markov representation $T = \{T_s; s \in S\}$ of S on L^1 , the condition (A) holds if and only if $L^+(T) = \{0\}$.

The next lemma is essential for us to prove Theorem 1.

Lemma 5. If $h \in L^+(T)$, then there exists a $V \in \overline{co}(T)$ such that $\lim_{n\to\infty} \|V^{*n}h\|_{\infty} = 0$.

Proof. Let $\{\alpha_n; n=1, 2, \dots\}$ be a sequence of positive numbers with $\sum_{i=1}^{\infty} \alpha_i = 1$, and put $\beta_n = \sum_{i=1}^{n} \alpha_i$ and $\tilde{\beta}_n = 1 - \beta_n$. Moreover we choose an increasing sequence $\{\gamma_n\}$ of positive integers satisfying $\lim_{n\to\infty} \beta_n^{r_n} = 0$. We can take a sequence $\{Q_n\}$ in co(T) such that

(4)
$$||Q_n^*h_n||_{\infty} < \frac{1}{n}$$
 for $n=1, 2, \cdots$,

where $h_1 = h$, $h_n = h + \sum_{i=1}^{n-1} \sum_{k=0}^{r_i} V_i^{*k} h$ for $n \ge 2$, and $V_i = \beta_i^{-1} \sum_{j=1}^{i} \alpha_j Q_j$. Indeed, since $h_n \in L^+(T)$ for all $n \ge 1$, we have $\inf \{ || Q^*h_n ||_{\infty} ; Q \in co(T) \} = 0$ by (2). So the desired sequence $\{Q_n\}$ can be taken inductively. We now put $V = \sum_{i=1}^{\infty} \alpha_i Q_i$ and $\tilde{V}_n = \tilde{\beta}_n^{-1} \sum_{i=n+1}^{\infty} \alpha_i Q_i$. Then $V \in \overline{co}(T)$, $V = \beta_n V_n + \tilde{\beta}_n \tilde{V}_n$, and from (4) we have

(5)
$$\|\tilde{V}_n^*V_n^{*k}h\|_{\infty} < \frac{1}{n+1}$$
 for all $n \ge 1$ and $0 \le k \le \gamma_n$.

For any given $\varepsilon > 0$ we can find a positive integer n such that $\beta_n^{r_n} \|h\|_{\infty} < \varepsilon/2$ and $(n+1)^{-1} < \varepsilon/2$. Putting $N = \gamma_n$, by (5) we have

$$\|V^{*N}h\|_{\infty} = \|(\beta_n V_n^* + \tilde{\beta}_n \tilde{V}_n^*)^N h\|_{\infty} < \beta_n^N \|V_n^{*N}h\|_{\infty} + \frac{1}{n+1}(1-\beta_n^N) < \varepsilon.$$

So $||V^{*k}h||_{\infty} < \varepsilon$ for all $k \ge N$. Hence this V has our desired property.

q.e.d.

Using Lemma 5, we can prove the following lemma by the same method as in Theorem 1 in [1].

Lemma 6. For any $h \in L^+(T)$ there exists a $U \in \overline{co}(T)$ such that $\sum_{k=0}^{\infty} U^{*k}h \in L^{\infty}$.

From Lemma 6 it follows that if $L^+(T)$ contains a non-zero function, then in $\overline{co}(T)$ there exists at least one operator which is not conservative. Hence if the condition (B) holds, then $L^+(T) = \{0\}$. Owing to Lemma 4, we can conclude that the condition (B) implies (A) for any Markov representation of S on L^1 . Thus Theorem 1 is proved completely.

§ 2. Proof of Theorem 2. Let S and $T = \{T_s; s \in S\}$ be as in Theorem 2. Suppose now that $L^+(T)$ contains a non-zero function. Then there exists an $A \in \Sigma$, m(A) > 0 such that the indicator function $h = I_A$ of A belongs to $L^+(T)$. By (3) we can take an element $s \in S$ satisfying $||T_s^*h||_{\infty} < 1$. Since $h = h^2$, we have $||T_s^*h||_{\infty} = ||(T_s^*h)^2||_{\infty} \le ||T_s^*h||_{\infty}^2$. So $||T_s^*h||_{\infty} = 0$. This means that T_s is not conservative. Hence recalling Lemma 4, we conclude that the condition (C) implies (A) for any Markov representation of S on L^1 with (1). Thus Theorem 2 is proved completely.

References

- A. Brunel: New conditions for existence of invariant measures in ergodic theory. Springer-Verlag, Lecture notes in Math., 160, 7-17 (1970).
- [2] E. Granirer: Functional analytic properties of extremely amenable semigroups. Trans. Amer. Math. Soc., 137, 53-75 (1969).
- [3] S. Horowitz: On finite invariant measures for sets of Markov operators. Proc. Amer. Math. Soc., 34, 110-114 (1972).
- [4] K. Sakai: On finite invariant measures for Markov representations of amenable semigroups (to appear in Sci. Rep. Kagoshima Univ., 26 (1977)).
- [5] W. Takahashi: Invariant functions for amenable semigroups of positive contractions on L¹. Kôdai Math. Sem. Rep., 23, 131-143 (1971).