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101. Differential Geometry of Conics in the Prolective
Space of Three Dimensions.

III. Differential invariantforms in the theory of a two-
parameterfamily of conics (second report).

By Akitsugu KAWAGUCH.
(Rec. July 12, 1928. Comm. by M. FtJ]WARA, i..A., July 12, 1928.)

4. Normalization of l. A two-parameter family of conics in the
projective space of three dimentions can be represented by the equations
in the parametric form

(19) (u, u2), I I(u1, u2),
when we adopt the coordinate system of a conic in space, introduced in
one of my previous papers). For the system we have already com-
pletely discussed in the first report, and we may use the differential
forms and the results in that report, because the present theory can be
got by a proper combination of those of a conic-family in a plane (theory
of ) and of a surface in space (theory for I). We must, therefore,
introduce other differential invariant forms connected with the family,
besides those introduced in the first report.

Put

(20) H--hdudu=- I I I2 Il dudu,
which is an invariant differential form, where

G=glg.=g2
and I, I are the first and the second covariant derivatives of with
respect to the form gdudu. Moreover we introduce the quantities h
such that

(21) hh=
and normalize the coordinates so that they satisfy the relation

(22) hg=1,
since h is multiplied by p- corresponding to a change of proportional
facter pl.

5. Another differential form. Consider the differential form of
the third order
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(23)

then it follows

3 dH,c.adududu- I I I.

1{(24) c---- 2v/G
3]I, Ili, I’, Ik]--! I, I1, I2, Iijkl dududu

and ca is a symmetrical tensor. We can see that between h and c
the relations hold good

(25) he,=O.,
Let us consider a surface enveloped by the planes I (u, u2) and its

point-coordinates be t)(u, u2), then

(26)

putting

== 1 (=--sgn G)

6. New vectors m, 5. I will now denote in the following the co-
variant derivatives of a quantity p with respect to the form hdudu by
p, then we get very easily

(27) Ci3"k l t, I1, 2,-/jk

It is not difficult to find out the relations

(28)

For a new vector

l_h(29) m= I,

the relations subsist"

(30)1 l h 1Mkc 0

hence

(30)2
dually for a vector

(31)

mt}=0

1) See G. Fubini-E. Cech, Geometria proiettiva differenziale, vol. I, Bologna,
1926, pp. 64-67.
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we have
(82)
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By aid of these relations we can put

(33) { t),-= --ce.h t+he-+
from which the two new differential forms

(34) podudu, rrodudu
These forms are both apolar to hz, i.e.

hZp=0, hZz=0,
2m h[ 2m +hZpzI,

appear.

(35)
for

From (30) and (32)

where

etc.

(37)

343

k+ mi+m] (mi) q,

9h- .
mt)=tgh+, miOj--nhqq-----n, etc.

Representability ofh by. other quantities. In the general case

since

7.
we may now assume that the three differential forms

gdudu, co.a. do.idu q.dudu_(p+rr)duidu

are mutually linearly independent; then the quantities h must be
linearly represented by g, ctt..a, q, i.e.

(38) h:ag+flca+rq,
but from (22), (25) and (35) a, fl and are determined by

1 a +pc: k +rq,
(39) 0"’"k elema&an :.lqi$..k

0

8. Equations of integrability (continued). Equations of integra-
bility for the differential equations (33) and (36) are

c(ph+. +hk)=0,
(40)

--ch +. + =0,
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(41) t Ck. t)h + Pi(k,) + h(nth+c(cvhh ii

--c.)h +(. +h( +cct),vhvh =
k(.9+nv(ph =0,

(42)
(. +v(uhv O,

I k(iO +.ht+nt(icvhtvh=O,
(43)

(+[(.)h--=(chh O.
From (40) and (41) we get

k(ik copi)qhqhr+p;k,
--c)qhh+ i)h,

(44)
% +c)h +p)h +c:,v)thh,
3(=hqh--c.h +g)hk+crqvi)hqthk,

2
that is the quantities k, , n, are all represented by other
quantities. It follows moreover from (41)

for r=p this relation becomes

2c(. + (p:--r)h+h(--p)=0.
From this relation and

(45) h%.=0
we have

, 1 )du hdu(46) (p---)au au : ca. H=halheha,
Ldu hdu

therefore p and can de represented by g-, q, a, c.
9. Thefuaml theorem. By the above results we can prove

the fundamental theorem:
Wh the four differtial forms gudu, qdudu, adududu

and c$dududu are give, between which the conditnsfor integrability
above mentioned hold good, th the two-ramet family of conics
having those fos as the fundamental forms in the ojective space of
three diions is unuely determined, expect for ojective transfor-
mation.


