101. Differential Geometry of Conics in the Projective Space of Three Dimensions.

III. Differential invariant forms in the theory of a twoparameter family of conics (second report).
By Akitsugu Kawaguchi.
(Rec. July 12, 1928. Comm. by M. Fujiwara, m.I.A., July 12, 1928.)

4. Normalization of I . A two-parameter family of conics in the projective space of three dimentions can be represented by the equations in the parametric form

$$
\begin{equation*}
\mathfrak{a}=\mathfrak{a}\left(u^{1}, u^{2}\right), \mathfrak{l}=\mathfrak{l}\left(u^{1}, u^{2}\right) \tag{19}
\end{equation*}
$$

when we adopt the coordinate system of a conic in space, introduced in one of my previous papers ${ }^{11}$. For the system a we have already completely discussed in the first report, and we may use the differential forms and the results in that report, because the present theory can be got by a proper combination of those of a conic-family in a plane (theory of \mathfrak{a}) and of a surface in space (theory for \mathfrak{l}). We must, therefore, introduce other differential invariant forms connected with the family, besides those introduced in the first report.

Put

$$
\begin{equation*}
H=h_{\dot{i}} d u^{i} d u^{j}=\frac{1}{\sqrt{G}}\left|\mathfrak{l}_{1} \mathfrak{Y}_{2} \mathfrak{C}_{i j}\right| d u^{i} d u^{j}, \tag{20}
\end{equation*}
$$

which is an invariant differential form, where

$$
G=g_{11} g_{22}=g_{12}{ }^{2}
$$

and $\mathfrak{l}_{i}, \mathfrak{l}_{i j}$ are the first and the second covariant derivatives of \mathfrak{l} with respect to the form $g_{i j} d u^{i} d u^{j}$. Moreover we introduce the quantities $h_{i j}$ such that

$$
\begin{equation*}
h^{i \overline{h_{i}^{i k}}}{ }_{i k}=\delta_{k^{j}}{ }^{j} \tag{21}
\end{equation*}
$$

and normalize the coordinates \mathfrak{l} so that they satisfy the relation

$$
\begin{equation*}
h^{i j} g_{i j}=1, \tag{22}
\end{equation*}
$$

since $h^{i j}$ is multiplied by ρ^{-4} corresponding to a change of proportional facter: ρ l.
5. Another differential form. Consider the differential form of the third order

[^0]\[

$$
\begin{equation*}
\left.c_{i j k} d u^{i} d u^{j} d u^{k}=\frac{1}{\sqrt{G}}\left|\mathfrak{Y}_{i} \mathfrak{l}_{2} d^{3}\right| \right\rvert\,-\frac{3}{2} d H \tag{23}
\end{equation*}
$$

\]

then it follows

$$
\begin{equation*}
c_{i j k}=\frac{1}{2 \sqrt{G}}\left\{3\left|\mathfrak{l}, \mathfrak{l}_{1 i}, \mathfrak{l}_{2 j}, \mathfrak{l}_{k}\right|-\left|\mathfrak{l}, \mathfrak{l}_{1}, \mathfrak{l}_{2}, \mathfrak{l}_{i j k}\right|\right\} d u^{i} d u^{j} d u^{k} \tag{24}
\end{equation*}
$$

and $c_{i j k}$ is a symmetrical tensor. We can see that between $h^{i j}$ and $c_{i j k}$ the relations hold good

$$
\begin{equation*}
h^{i j} c_{i j k}=0 .^{1)} \tag{25}
\end{equation*}
$$

Let us consider a surface enveloped by the planes $\mathfrak{l}\left(u^{1}, u^{2}\right)$ and its point-coordinates be $\mathfrak{y}\left(u^{1}, u^{2}\right)$, then

$$
\begin{equation*}
\mathfrak{y}=\lambda\left\|\mathfrak{l}, \mathfrak{l}_{1}, \mathfrak{l}_{2}\right\|, \mathfrak{l}=\mu\left\|\mathfrak{y}, \mathfrak{y}_{1}, \mathfrak{y}_{2}\right\|, \tag{26}
\end{equation*}
$$

putting

$$
\lambda=\varepsilon \mu=\frac{1}{\sqrt{G}} \quad(\varepsilon=-\operatorname{sgn} G)
$$

6. New vectors \mathfrak{m}, 子. I will now denote in the following the covariant derivatives of a quantity \mathfrak{p} with respect to the form $\widetilde{h}_{i j} d u^{i} d u^{j}$ by $\hat{\mathfrak{p}}_{i}$, then we get very easily

$$
\begin{equation*}
c_{i j k}=\frac{1}{\sqrt{G}}\left|\mathfrak{l}, \mathfrak{l}_{1}, \mathfrak{l}_{2}, \overline{\mathfrak{l}}_{i j k}\right| \tag{27}
\end{equation*}
$$

It is not difficult to find out the relations

$$
\left\{\begin{array}{l}
h_{i j}=\mathfrak{b} \mathfrak{l}_{i j}=\mathfrak{l} \mathfrak{y}_{i j}=\mathfrak{y} \mathfrak{l}_{i j}=\mathfrak{l y}_{i j}, \tag{28}\\
c_{i j k}=\mathfrak{y} \mathfrak{l}_{i j k}=-\mathfrak{y}_{i j k} \mathfrak{l}^{2}
\end{array}\right.
$$

For a new vector

$$
\begin{equation*}
\mathfrak{m}=\frac{1}{2} h^{i j} \Gamma_{i j} \tag{29}
\end{equation*}
$$

the relations subsist:
$(30)_{1}$

$$
\begin{aligned}
\mathfrak{y}_{i} \mathfrak{m} & =\frac{1}{2} h^{j k}\left\lceil_{j k} \mathfrak{l}_{i}=-\frac{1}{2} h^{j k} c_{i j k}=0,\right. \\
\mathfrak{y m} & =\frac{1}{2} h^{i j}\left\lceil_{j k \mathfrak{l}}=\frac{1}{2} h^{i j} \bar{h}_{i j}=1,\right.
\end{aligned}
$$

hence
$(30)_{2}$

$$
\mathfrak{m}_{i} \mathfrak{y}=0 ;
$$

dually for a vector

$$
\begin{equation*}
\mathfrak{z}=\frac{1}{2} h^{i j} y_{i j} \tag{31}
\end{equation*}
$$

1) See G. Fubini-E. Čech, Geometria proiettiva differenziale, vol. I, Bologna, 1926, pp. 64-67.
we have

$$
\begin{equation*}
\mathfrak{l}_{\mathfrak{z}}=1, \mathfrak{l}_{i \mathfrak{z}}=0, \mathfrak{l}_{\mathfrak{z}_{i}}=0 . \tag{32}
\end{equation*}
$$

By aid of these relations we can put

$$
\left\{\begin{array}{l}
\hat{\mathfrak{l}}_{i j}=c_{i j k} h^{k m \mathfrak{l}_{m}}+h_{i j} \mathfrak{m}+p_{i j} \mathfrak{l}, \tag{33}\\
\hat{\mathfrak{y}}_{i j}=-c_{i j k} h^{k m \mathfrak{y}_{m}}+h_{i j}+\pi_{i j} \mathfrak{y}
\end{array}\right.
$$

from which the two new differential forms

$$
\begin{equation*}
p_{i 0} d u^{i} d u^{j}, \pi_{i j} d u^{i} d u^{j} \tag{34}
\end{equation*}
$$

appear. These forms are both apolar to $h^{i j}$, i.e.

$$
\begin{gather*}
h^{i j} p_{i j}=0, \quad h^{i j} \pi_{i j}=0, \tag{35}\\
2 \mathfrak{m}=h^{i j \hat{\jmath}} \hat{i}_{i j}=2 \mathfrak{m}+h^{i j} p_{i j} \mathfrak{r}, \quad \text { etc. }
\end{gather*}
$$

for
From (30) and (32)

$$
\left\{\begin{align*}
\mathfrak{m}_{i} & =k_{i} \mathfrak{l}+n_{i p} h^{p q} I_{q}, \tag{36}\\
\mathfrak{z}_{i} & =\lambda_{i} \mathfrak{y}+\mu_{i p} h^{p q} \mathfrak{y}^{q},
\end{align*}\right.
$$

where

$$
\left\{\begin{array}{l}
k_{i}+\lambda_{i}=\mathfrak{m}_{i \overline{ }}+\mathfrak{m}_{\delta_{i}}=\frac{\partial}{\partial u^{i}}(\mathfrak{n} \mathfrak{z})=\Omega_{i} \tag{37}\\
n_{i j}=\pi_{i j}+\Omega \bar{h}_{i j}, \quad \mu_{i j}=p_{i j}+\Omega \bar{h}_{i j}
\end{array}\right.
$$

since

$$
\mathfrak{m y}_{i j}=\overline{\Omega h}_{i j}+\pi_{i j}, \quad \mathfrak{m}_{i} \mathfrak{y}_{j}=-n_{i p} \bar{h}^{p q h_{q j}}=-n_{i j}, \quad \text { etc. }
$$

7. Representability of $h^{i j}$ by other quantities. In the general case we may now assume that the three differential forms

$$
g_{i j} d u^{i} d u^{j}, \quad c_{i j} a_{\cdot k}^{l k} d u^{i} d u^{j}, q_{i j} d u^{i} d u^{j}=\left(p_{i j}+\pi_{i j}\right) d u^{i} d u^{j}
$$

are mutually linearly independent; then the quantities $h^{i j}$ must be linearly represented by $g^{i j}, c_{\cdot}^{i j}{ }_{l} a_{\cdot k}^{l \cdot k}$, $q^{i j}$, i.e.

$$
\begin{equation*}
h^{i j}=\alpha g^{i j}+\beta c_{\cdot}^{i j} a_{\cdot \cdot}^{l k}+\gamma q_{k}^{i j} \tag{38}
\end{equation*}
$$

but from (22), (25) and (35) α, β and γ are determined by
8. Equations of integrability (continued). Equations of integrability for the differential equations (33) and (36) are

$$
\begin{align*}
& \left\{\begin{array}{l}
\hat{k}_{(i, j)}+n_{p(i} p_{j j_{k}} h^{p k}=0, \\
\lambda_{(i, j)}+\mu_{p(i} \pi_{j) k} h^{p k}=0,
\end{array}\right. \tag{42}\\
& \left\{\begin{array}{l}
k_{(i} \delta_{j)}^{m}+\hat{n}_{\langle i, j)} h^{l m}+n_{l i} c_{j m p} h^{l p} h^{n m}=0, \\
\lambda_{(i} \delta_{j]^{m}}+\hat{\mu}_{p(i, j)} h^{l m}-\pi_{l i} c_{j j n p} h^{h p} h^{n m}=0 .
\end{array}\right. \tag{43}
\end{align*}
$$

From (40) and (41) we get
that is the quantities $k_{i}, \lambda_{i}, n_{j p}, \mu_{j p}$ are all represented by other quantities. It follows moreover from (41)

$$
2 \hat{c}_{r p(i, j)}+\left(p_{r i i}-\pi_{r j)}\right) h_{j \supset p}+h_{r(i}\left(n_{j\langle p}-\mu_{j \supset p}\right)=0
$$

for $r=p$ this relation becomes

$$
2 \hat{c}_{r p(i, j)}+\left(p_{r i i}-\pi_{r(i}\right) h_{j>p}+h_{r i}\left(\pi_{j \supset p}-p_{j>p}\right)=0
$$

From this relation and

$$
\begin{equation*}
h^{p q} \hat{c}_{q p i, j}=0 \tag{45}
\end{equation*}
$$

we have

$$
\left(p_{i j}-\pi_{i j}\right) d u^{i} d u^{j}=\frac{1}{H}\left|\begin{array}{ll}
\hat{c}_{1 i(1,2)} d u^{i} & \bar{h}_{1 j} d u^{j} \tag{46}\\
\hat{c}_{2 i(1,2)} d u^{i} & \bar{h}_{2 j} d u^{j}
\end{array}\right|, \quad H=h_{11} h_{i 2}-h_{12}{ }^{2}
$$

therefore $p_{i j}$ and $\pi_{i j}$ can de represented by $g_{i j}, q_{i j}, a_{i j k}, c_{i j k}$.
9. The fundamental theorem. By the above results we can prove the fundamental theorem:

When the four differential forms $g_{i j} d u^{i} d u^{j}, q_{i j} d u^{i} d u^{j}, a_{i j k} d u^{i} d u^{j} d u^{k}$ and $c_{i j k} d u^{i} d u^{j} d u^{k}$ are given, between which the conditions for integrability above mentioned hold good, then the two-parameter family of conics having those forms as the fundamental forms in the projective space of three dimensions is uniquely determined, expect for projective transformations.

[^0]: 1) Differential geometry of conics in the projective space of three dimensions, I. Fundamental theorem in the theory of a one-parameter family of conics, these Proceedings 4, 255-258.
