157. On the Class of Functions with Absolutely Convergent Fourier Series.

By Kien-Kwong Chen.
Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FuJiwara, M.I.A., Nov. 2, 1928.)

1. Let

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

be the Fourier series of a periodic summable function $f(x)$ with the period 2π. As regards the absolute convergence of the series (1), Zygmund ${ }^{11}$ has given a sufficient condition in the form that the function $f(x)$ is of limited variation and satisfies Lipschitz's condition of the positive order.

In this note, we determine the class of all the functions whose Fourier series converge absolutely.

A periodic function $f(x)$ is said to be Young's continuous function, if there exist two periodic square-summable functions $f_{1}(x), f_{2}(x)$, satisfying the relation

$$
f(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{1}(\xi) f_{2}(\xi+x) d \xi
$$

here and afterwards the period being taken to be 2π. The functions of such a type were first considered by Young ${ }^{2}$. Now we will prove the following theorem:

The necessary and sufficient condition for the absolute convergence of a trigonometrical series in the whole interval ${ }^{3}$, is that the series is a Fourier series of a Young's continuous function.
2. First we prove the necessity of the condition. Assuming the absolute convergence of the series

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right), \tag{1}
\end{equation*}
$$

[^0]we put
\[

$$
\begin{gathered}
\sqrt{\left|a_{n}\right|}=\alpha_{n}, \quad \sqrt{\left|b_{n}\right|}=\beta_{n}, \\
m_{n}=\operatorname{Max}\left(\alpha_{n}, \beta_{n}\right)
\end{gathered}
$$
\]

and define two sequences $a_{0}{ }^{\prime}, a_{1}{ }^{\prime}, b_{1}{ }^{\prime}, \ldots$ and $a_{0}{ }^{\prime \prime}, a_{1}{ }^{\prime \prime}, b_{1}{ }^{\prime \prime}, \ldots$ as follows :

$$
\begin{aligned}
& a_{0}{ }^{\prime} a_{0}^{\prime \prime}=a_{0}, \\
& a_{n}{ }^{\prime}=b_{n}{ }^{\prime}=m_{n}, \\
& a_{n}{ }^{\prime \prime}=\frac{1}{2 m_{n}}\left(a_{n}+b_{n}\right) \\
& b_{n}{ }^{\prime \prime}=\frac{1}{2 m_{n}}\left(a_{n}-b_{n}\right) \text { for } m_{n} \neq 0, \\
& a_{n}{ }^{\prime \prime}=b_{n}^{\prime \prime}=0 \quad \text { for } m_{n}=0, \\
& \quad n=1,2, \ldots \ldots .
\end{aligned}
$$

 We have further

$$
\begin{aligned}
\sum\left(a_{n}^{\prime 2}+b_{n}^{\prime 2}\right) & =2 \sum m_{n}^{2} \leqq 2 \sum\left(a_{n}^{2}+\beta_{n}^{2}\right)=2 \sum\left(\left|a_{n}\right|+\left|b_{n}\right|\right), \\
\sum\left(a_{n}{ }^{\prime \prime 2}+b_{n}{ }^{\prime \prime 2}\right) & =\sum_{m_{n} \neq 0}\left(a_{n}{ }^{\prime \prime 2}+b_{n}^{\prime \prime 2}\right)=\frac{1}{4} \sum_{m_{n} \neq 0} \frac{\left(a_{n}+b_{n}\right)^{2}+\left(a_{n}-b_{n}\right)^{2}}{m_{n}^{2}} \\
& =\frac{1}{2} \sum_{m_{n} \neq 0} \frac{a_{n}^{2}+b_{n}^{2}}{m_{n}^{2}} \leqq \frac{1}{2} \sum\left(\left|a_{n}\right|+\left|b_{n}\right|\right) .
\end{aligned}
$$

Thus the series $\sum\left({a_{n}}^{\prime 2}+b_{n}{ }^{2}\right)$ and $\sum\left({a_{n}}^{\prime \prime 2}+b_{n}{ }^{\prime \prime 2}\right)$ are convergent. Hence it follows from Riesz-Fischer's theorem that there exist two periodic functions $f_{1}(x)$ and $f_{2}(x)$ whose Fourier coefficients are $a_{0}{ }^{\prime}, a_{1}{ }^{\prime}, b_{1}{ }^{\prime}, \ldots$ and $a_{0}{ }^{\prime \prime}, a_{1}{ }^{\prime \prime}, b_{1}{ }^{\prime \prime}, \ldots$. respectively. Moreover the squares of these functions are summable.

We proceed to show that the series (1) is the Fourier's expansion of the Young's continuous function

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{1}(\xi) f_{2}(\xi+x) d \xi \tag{2}
\end{equation*}
$$

By the change of the order of integrations ${ }^{2}$, we get

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi^{2}} \int_{-\pi}^{\pi} f_{1}(\xi) d \xi \int_{-\pi}^{\pi} f_{2}(\xi+x) \cos n x d x
$$

1) Loc. cit.
2) This is evidently allowable.

No. 9.] On the Class of Functions with Absolutely Convergent Fourier Series. 519

$$
\begin{aligned}
& =\frac{1}{\pi^{2}} \int_{-\pi}^{\pi} f_{1}(\xi) d \xi \int_{-\pi+\xi}^{\pi+\xi} f_{2}(x) \cos n(x-\xi) d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f_{1}(\xi)\left[a_{n}{ }^{\prime \prime} \cos n \xi+b_{n}{ }^{\prime \prime} \sin n \xi\right] d \xi \\
& =a_{n}{ }^{\prime} a_{n}{ }^{\prime \prime}+b_{n}{ }^{\prime} b_{n}{ }^{\prime \prime} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=b_{n}{ }^{\prime} a_{n}{ }^{\prime \prime}-a_{n}{ }^{\prime} b_{n}{ }^{\prime \prime} \\
& \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=a_{0}{ }^{\prime} a_{0}{ }^{\prime \prime}=a_{0} .
\end{aligned}
$$

For $m_{n} \neq 0$, we have

$$
\begin{aligned}
& a_{n}{ }^{\prime} a_{n}{ }^{\prime \prime}+b_{n}{ }^{\prime} b_{n}{ }^{\prime \prime}=m_{n}\left(a_{n}{ }^{\prime \prime}+b_{n}{ }^{\prime \prime}\right)=a_{n}, \\
& b_{n}^{\prime} a_{n}{ }^{\prime \prime}-a_{n}{ }^{\prime} b_{n}^{\prime \prime}=m_{n}\left(a_{n}{ }^{\prime \prime}-b_{n}^{\prime \prime}\right)=b_{n} ;
\end{aligned}
$$

and for $m_{n}=0, \quad a_{n}=b_{n}=0, a_{n}{ }^{\prime}=b_{n}{ }^{\prime}=a_{n}{ }^{\prime \prime}=b_{n}{ }^{\prime \prime}=0$.
Hence,

$$
\begin{aligned}
& a_{n}{ }^{\prime} a_{n}{ }^{\prime \prime}+b_{n}{ }^{\prime} b_{n}^{\prime \prime}=a_{n}, \quad n=1,2, \ldots \ldots \\
& b_{n}{ }^{\prime} a_{n}{ }^{\prime \prime}-a_{n} b_{n} b_{n}^{\prime \prime}=b_{n} .
\end{aligned}
$$

Therefore

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos \sin n x d x==_{b_{n}}^{a_{n}}, \quad n=0,1,2, \ldots \ldots
$$

Since the function $f(x)$ is defined by (2), the necessity of the condition is thus proved.
3. To proved the sufficiency of the given condition, let the function $f(x)$ be defined by the relation

$$
f(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{1}(\xi) f_{2}(\xi+x) d \xi,
$$

where $f_{1}(x), f_{2}(x)$ denote two square-summable functions with the period 2π. The Fourier's constants of $f_{1}(x)$ are

$$
\begin{gathered}
a_{n}{ }^{\prime}=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{1}(\xi) \cos n \xi d \xi, \quad b_{n}{ }^{\prime}=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{1}(\xi) \sin n \xi d \xi, \\
n=0,1,2, \ldots \ldots
\end{gathered}
$$

Let x be fixed and denote the Fourier's coefficients of the function $f_{2}(\xi+x)$ by $a_{0}{ }^{\prime \prime}(x), a_{1}{ }^{\prime \prime}(x), b_{1}{ }^{\prime \prime}(x), \ldots \ldots$; thus

$$
\underset{b_{n}^{\prime \prime}}{a_{n}^{\prime \prime}(x)}(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f_{2}(\xi+x) \cos _{\sin }^{\cos } n \xi d \xi, \quad n=0,1,2, \ldots \ldots
$$

Then by the Parsevals's identity we have

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\pi}^{\pi} f_{1}(\xi) f_{2}(\xi+x) d \xi=\frac{1}{2} a_{0}{ }^{\prime} a_{0}{ }^{\prime \prime}(x)+\sum_{n=1}^{\infty}\left(a_{n}{ }^{\prime} a_{n}{ }^{\prime \prime}(x)+b_{n}{ }^{\prime} b_{n}{ }^{\prime \prime}(x)\right), \tag{3}
\end{equation*}
$$

which is an absolutely convergent series, since the series

$$
\sum\left({a_{n}}^{\prime 2}+b_{n}{ }^{\prime 2}\right) \text { and } \sum\left({a_{n}}^{\prime \prime 2}(x)+b_{n}^{\prime \prime 2}(x)\right)
$$

are convergent. The series (3) is, however, nothing but the Fourier's expansion of the function $f(x)$. In fact, applying the calculations in 2,

$$
\begin{aligned}
\frac{1}{\pi} \int_{-\pi}^{\pi} f\left(x^{\prime}\right) d x^{\prime} & =\frac{1}{\pi^{2}} \int_{-\pi}^{\pi} f_{1}(\xi) d \xi \cdot \int_{-\pi}^{\pi} f_{2}(\xi) d \xi \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f_{1}(\xi) d \xi \cdot \int_{-\pi}^{\pi} f_{2}(\xi+x) d \xi=a_{0}{ }^{\prime} a_{0}{ }^{\prime \prime}(x)
\end{aligned}
$$

since $f_{2}(x)$ is periodic. And

$$
\begin{aligned}
& \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(x^{\prime}\right) \cos n x^{\prime} d x^{\prime} \cdot \cos n x+\frac{1}{\pi} \int_{-\pi}^{\pi} f\left(x^{\prime}\right) \sin n x^{\prime} d x^{\prime} \cdot \sin n x \\
& \quad=\cos n x\left(a_{n}{ }^{\prime} \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} f_{2}(\xi) \cos n \xi d \xi+b_{n}{ }^{\prime} \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} f_{2}(\xi) \sin n \xi d \xi\right) \\
& \quad+\sin n x\left(b_{n}{ }^{\prime} \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} f_{2}(\xi) \cos n \xi d \xi-a_{n}{ }^{\prime} \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} f_{2}(\xi) \sin n \xi d \xi\right) \\
& \quad=a_{n}{ }^{\prime} \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} f_{2}(\xi) \cos n(\xi-x) d \xi+b_{n}{ }^{\prime} \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} f_{2}(\xi) \sin n(\xi-x) d \xi \\
& =a_{n}{ }^{\prime} \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} f_{2}(\xi+x) \cos n \xi d \xi+b_{n}{ }^{\prime} \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} f_{2}(\xi+x) \sin n \xi d \xi \\
& =a_{n}{ }^{\prime} a_{n}{ }^{\prime \prime}(x)+b_{n}{ }^{\prime} b_{n}{ }^{\prime \prime}(x) .
\end{aligned}
$$

Thus the proposition is established.

[^0]: 1) A. Zygmund, Remarque sur la convergence absolue des séries de Fourier, The Journal of the London Math. Soc., 3 (1928), 194-196.
 2) W.H. Young, On a class of parametric integrals etc., Proc. Roy. Soc. (A), 85 (1911), 401-414.
 3) N. Lusin proved that if a trigonometrical serie is absolutely convergent at a set of positive measure, it converges every where absolutely; see Comptes Rendus, 155 (1912), 580.
