PAPERS COMMUNICATED

65. Theory of Connections in the Generalized Finsler Manifold.

By Akitsugu Kawaguchi.
Mathematical Institute, Hokkaido Imperial University, Sapporo.
(Comm. by T. Yosie, m.I.A., June 12, 1931.)

Recently the theory of connections in the Finsler manifold F_{n} has been developed somewhat by several authors, ${ }^{1}$ in which the parameters of the connections are in general functions not only of positions x^{ν} but also of directions $d x^{2}$. We shall consider some connections in the generalized Finsler manifold K_{n} similarly as in the Finsler manifold, the parameters of the connections depending on $x^{\nu}, d x^{\nu}, d^{2} x^{\nu}, \ldots \ldots, d^{r} x^{\nu}$.

1. The base-connections. Let X_{n} be a manifold of n dimensions, in which a system of coordinates x^{ν} is taken, and we express for brevity n differentials $d x^{\nu}$ of the coordinates by ${ }^{(1)} p^{\nu}: d x^{\nu}=\left({ }^{(1)}{ }^{\nu}\right.$. Introduce an arbitrary linear connection $\stackrel{(1)}{U}$, whose parameters $\stackrel{\Gamma}{\Gamma}_{\stackrel{(1)}{\nu}}^{(\alpha)}$ depend upon positions and directions, i.e. x^{ν} and $d x^{\nu}$, then we get covariant differentials of a line element $\stackrel{(1)}{p}$, which can be considered as a contravariant vector and expressed by the parameters ${\stackrel{(1)}{\Gamma}{ }_{\lambda \mu}}^{(1)}$ of the connection $\stackrel{(1)}{U}$ as follows:

$$
\begin{equation*}
\stackrel{(1)(1)}{\delta} p^{\nu}=d p^{(1)}+\stackrel{(1)}{\Gamma_{\lambda \mu}^{v}} \stackrel{(1)}{(1)} d x^{\nu} . \tag{1.1}
\end{equation*}
$$

We shall write $\stackrel{(2)}{p^{v}}$ for $\stackrel{(1)(1)(1)}{\delta} p^{\nu}$, which is function of x^{ν} as well as $\stackrel{(1)}{p^{\nu}}$. Let us call this contravariant vector ${ }^{(2)}{ }^{\nu}$ v the line element of the second kind.

We introduce moreover a new linear connection $\stackrel{(2)}{U}^{2}$) for X_{n}, whose
 nection U is applied to the affinors, which depend on x^{ν} and the foregoing line elements $\stackrel{(1)}{p^{v}}$ and $\stackrel{(2)}{p}$, and by which we get the line element of the third kind
(1.2) $\quad \stackrel{(3)}{p^{v}}=\delta_{\delta}^{(2)(2)} p^{\nu}=d p^{(2)}+\Gamma_{\lambda_{\mu}}^{(2)} p^{(2)} d x^{\mu}$,

1) E. Noether: Göttinger Nachrichten, math.-phys. Kl. (1918), S. 37-44. L. Berwald: Jahresberichte d. Deutschen Math.-Ver. 34 (1925), S. 213-220. J. L. Synge: Trans. of Amer. Math. Soc. 27 (1925), p. 61-67. J. H. Taylor: Trans. of Amer. Math. Soc. 27 (1925), p. 246-264.
2) $\stackrel{(21}{U}$ is in general different from $\stackrel{(1)}{U}$, but we may also take same one with $\stackrel{(1)}{U}$ as $\stackrel{(2)}{U}$. It is completely analogous for following connections $\stackrel{(b)}{U}$.
$\stackrel{(3)}{p^{\nu}}$ s are functions of $x^{\nu}, \stackrel{(1)}{p}^{\nu}$ and $\stackrel{(2)}{p}^{\nu}$, as we can see easily. Introducing another linear connections $\stackrel{(3)}{U}, \stackrel{(4)}{U}, \ldots \ldots, \stackrel{(\underset{\sim}{U}}{U}$ and repeating this method we can get in general a line element of the $(k+1)$-th kind
 $\stackrel{(1)}{p^{v}}, \stackrel{(2)}{p^{v}}, \ldots \ldots, \stackrel{(i)}{p}{ }^{\text {v }}$. These connections $\stackrel{(1)}{U}, \stackrel{(2)}{U}, \ldots \ldots, \stackrel{(r)}{U}$ are called the base connections. The manifold X_{n}, to whose every point are associated every system of the line elements $\stackrel{(1)}{p}^{\nu}, \stackrel{(1)}{p}^{\nu}, \ldots \ldots, \stackrel{(r)}{p^{\nu}}$, is defined as the generalized Finsler manifold.
2. The connection U. Consider a contravariant or covariant vector, which depends on $x^{\nu}, d x^{\nu}, \ldots \ldots, d^{r} x^{\nu}$, then components of the vector will be considered as functions of $x^{v}, \stackrel{(1)}{p^{\nu}}, \ldots \ldots, \stackrel{(r)}{p^{v}}$, for we can substitute $\stackrel{(1)}{p^{\nu}}, \ldots \ldots, \stackrel{(r)}{p^{\nu}}$ for $d x^{\nu}, \ldots \ldots, d^{r} x^{\nu}$ by (1.1), (1.2) and (1.3). Now we define a connection U for such contravariant or covariant vectors v^{ν} or w_{λ} :

$$
\begin{align*}
& \delta v^{\nu}=\nabla_{\mu} v^{\nu} d x^{\mu}=d v^{\nu}+\Gamma_{\lambda \mu}^{\nu} v^{\lambda} d x^{\mu}, \tag{2.1}\\
& \delta w_{\lambda}=\nabla_{\mu} w_{\lambda} d x^{\mu}=d w_{\lambda}-\Gamma_{\lambda \mu}^{\prime \nu} w_{\nu} d x^{\mu}
\end{align*}
$$

where $\Gamma_{\lambda, ~}^{\nu}$'s as well as $\Gamma_{\lambda \mu}^{\prime \prime \prime}$'s depend upon $x^{\nu}, \stackrel{(1)}{p}_{p}^{\nu},{ }^{(2)}, \ldots \ldots, \stackrel{(r)}{p}^{\nu}$. Accordingly the covariant differential of any affinor can be defined from (2.1) and we can calculate the covariant derivatives

$$
\begin{align*}
& \nabla_{\mu} v^{\nu}=\frac{\partial v^{\nu}}{\partial x^{\mu}}+\Gamma_{\lambda \mu}^{\nu} v^{\lambda}+\sum_{i}^{1, r} \frac{\partial v^{\nu}}{\partial p^{(i)}}\left({ }^{(i)}{ }_{\mu}^{(i)} p^{(0)}-\stackrel{\Gamma}{\Gamma}_{\lambda \mu}^{(i)}{ }^{(i)} p^{\lambda}\right), \\
& \nabla_{\mu} w_{\lambda}=\frac{\partial w_{\lambda}}{\partial x^{\mu}}-\Gamma_{\lambda \mu}^{\prime \nu} w_{\nu}+\sum_{i}^{1, r} \frac{\partial w_{\lambda}}{\partial p^{(i)}}\left({ }_{\nabla}^{(i)}{ }_{\mu}^{(i)} p^{(i)}-{ }_{\Gamma}^{(i)}{ }_{\nu \mu}{ }^{(i)} p^{\nu}\right), \tag{2.2}
\end{align*}
$$

where ${\stackrel{(i)}{\nabla_{\mu}}{ }^{(i)} p^{(i)}}$ means covariant derivative of ${ }^{(i)}{ }^{(i)}$ referred to $\stackrel{(i)}{U}$.
3. Construction of the parameters $\Gamma_{\lambda \mu}^{\nu}$ and $\Gamma_{\lambda \mu}^{\prime \nu}$. The parameters $\Gamma_{\lambda \mu}^{\nu}$ and $\Gamma_{\lambda \mu}^{\prime \nu}$ are transformed in the same manner as that of the affine connection by any change of system of coordinates. Therefore

$$
\begin{equation*}
C_{\lambda \mu} \ddot{\nu}^{\nu}=\Gamma_{\lambda \mu}^{\nu}-\Gamma_{\lambda \mu}^{\prime \nu} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
S_{\dot{\lambda \mu}}^{\ddot{\nu}}=\frac{1}{2}\left(\Gamma_{\lambda \mu}^{\nu}-\Gamma_{\mu \lambda}^{\nu}\right), \quad S^{\prime} \ddot{\lambda \mu}{ }^{\nu}=\frac{1}{2}\left(\Gamma_{\lambda \mu}^{\prime \nu}-\Gamma_{\mu \lambda}^{\prime \nu}\right) \tag{3.2}
\end{equation*}
$$

are affinors. Let us consider a contravariant tensor $g^{\lambda \mu}$ and a corresponding covariant tensor $g_{\lambda_{\mu}}$, which depend upon $x^{\nu}, \stackrel{(1)}{p}^{\nu}, \ldots \ldots, \stackrel{(r)}{p^{\nu}}$ also, and put their covariant derivatives

$$
\begin{equation*}
\nabla_{\nu} g^{\lambda \mu}=Q_{\stackrel{\lambda}{\lambda \mu}}, \quad \nabla_{\nu} g_{\lambda \mu}=Q_{\lambda \mu \nu}^{\prime} \tag{3.3}
\end{equation*}
$$

Then it follows from (2.2)
(3. 4)
(3. 5)

$$
\Gamma_{\lambda \nu}^{\omega} g_{\omega j \nu}+\Gamma_{\mu \nu}^{\omega} g_{\omega \lambda}=\frac{\partial g_{\lambda \mu}}{\partial x^{\nu}}+Q_{\lambda \mu \nu}+\sum_{i}^{1, r} \frac{\partial g_{\lambda \mu}}{\partial^{(i)}}\left({ }^{(i)} \nabla_{\nu}^{(i)} p^{(i)}-\stackrel{(i)}{\tau \nu}_{(i)}^{(i)} p^{\tau}\right),
$$

where $Q_{\lambda \mu \nu}=g_{\lambda \omega} g_{\mu \tau} Q^{\omega \tau}{ }_{\nu \nu}$. We get in consequence of (3.5)
(3. 6) $\quad \Gamma_{\lambda \mu}^{\nu}=\left\{\begin{array}{c}\lambda \mu \\ \nu\end{array}\right\}+T_{\lambda \mu}^{\nu}{ }^{\nu}+W_{\dot{\mu} \mu}^{\nu}, \quad \Gamma_{\lambda \mu}^{\prime \nu}=\left\{\begin{array}{c}\lambda \mu \\ \nu\end{array}\right\}+T_{\dot{\lambda} \mu}^{\prime}{ }^{\nu}+W_{\dot{\lambda} \mu}{ }^{\nu}$, where we put
(3. 7)

$$
\left\{\begin{array}{l}
\lambda \mu \\
\nu
\end{array}\right\}=\frac{1}{2} g^{v \omega}\left(\frac{\partial g_{\lambda \omega}}{\partial x^{\mu}}+\frac{\partial g_{\omega \mu}}{\partial x^{\lambda}}-\frac{\partial g_{\lambda \mu}}{\partial x^{\omega}}\right)
$$

(3. 8)

$$
\begin{aligned}
& T_{i \mu}{ }^{\nu}=\frac{1}{2}\left(g_{\lambda \omega} Q_{i}^{;}{ }^{\omega \nu}+g_{\mu \omega} Q_{\lambda}{ }^{\omega \nu}-g^{\nu \sigma} g_{\mu \omega} g_{\lambda \tau} Q_{\sigma}{ }^{\cdot \omega \tau}\right),
\end{aligned}
$$

(3. 9)

$$
\begin{equation*}
T^{\prime} \ddot{\lambda} \dot{\mu}_{\nu}=T_{\dot{\lambda} \ddot{\mu}^{\nu}}-C_{\mu \ddot{\lambda}}^{\nu} \tag{3.10}
\end{equation*}
$$

4. The curvature tensor. We shall now find the curvature tensor. From (2. 2) it follows

$$
\begin{aligned}
& =\frac{\partial^{2} v^{\lambda}}{\partial x^{\nu} \partial x^{\nu}}+\frac{\partial \Gamma_{\rho v}^{\lambda}}{\partial x^{\underline{2}}} v^{\rho}+\Gamma_{\rho \nu}^{\lambda} \frac{\partial v^{\rho}}{\partial x^{u}}+\sum_{i} \frac{\partial^{2} v^{\lambda}}{\partial x^{\mu} \partial^{(i)} p^{(i)}}\left(\nabla_{\nu}^{(i)}{ }_{\nu}^{(i)} p^{\omega 0}-\Gamma_{\rho \nu}^{(i)} p^{(i)}\right) \\
& +\sum_{i} \frac{\partial v^{\lambda}}{\partial p^{(i)}}\left(\frac{\partial \nabla_{\nu}^{(i)}{ }_{\nu}^{(i)} p^{\omega}}{\partial x^{\mu}}-\frac{\partial \Gamma_{\Gamma_{p v}^{(i)}}^{(i)} p^{(i)}}{\partial x^{\mu}}\right)+\Gamma_{\omega ;}^{\lambda}\left(\frac{\partial v^{\omega}}{\partial x^{\nu}}+\Gamma_{p \nu}^{\omega} v^{\rho}\right. \\
& \left.+\sum_{i} \frac{\partial v^{(\omega)}}{\partial p^{(i)}}\left({ }_{\nabla}^{(i)}{ }_{\nu}^{(i)} p^{\sigma}-\stackrel{\Gamma}{\Gamma}_{\rho}^{(i)}{ }_{\nu}^{(i)} p^{\rho}\right)\right\}-\Gamma_{\lambda \mu}^{\prime / \omega} \nabla_{\omega} v^{\lambda}
\end{aligned}
$$

hence
(4. 1)

$$
\begin{aligned}
& \left.2 \nabla_{[\mu} \nabla_{\nu}\right\urcorner v^{\lambda}=R_{\lambda \cdots \rho}^{\cdots{ }_{\mu}} v^{p}-\sum_{i} R_{\lambda \mu \rho}^{(i)} \cdots \frac{\partial v^{\lambda(i)}}{\partial p^{(i)}} p^{\omega} \\
& +\sum_{i} \frac{\partial v^{\lambda}}{\partial_{p^{(i)}}^{(i)}} V_{\lambda \mu}^{\dot{\mu}}+2 S_{\mu \nu}^{\prime \cdots} \nabla_{\omega} v^{\lambda},
\end{aligned}
$$

where

$$
\begin{align*}
& R_{\lambda \mu \rho}^{\sim{ }_{\mu}^{\lambda}}=\frac{\partial \Gamma_{\rho \nu}^{\lambda}}{\partial x^{\nu}}-\frac{\partial \Gamma_{\rho \mu}^{\lambda}}{\partial x^{\nu}}+\Gamma_{\omega \mu}^{\lambda} \Gamma_{\rho \nu}^{\omega}-\Gamma_{\omega \nu}^{\lambda} \Gamma_{\rho \mu}^{\omega \omega} \tag{4.2}\\
& +\sum_{j} \frac{\partial \Gamma_{\rho v}^{\lambda}}{\partial p^{(j)}}\left({ }_{\nabla}^{(j)}{ }_{\mu}^{(j)} p^{\omega}-{ }^{(j)}{ }_{\tau \mu}^{(j)} p^{(j)}\right)-\sum_{j} \frac{\partial \Gamma_{\rho \mu}^{\lambda}}{\partial p^{(j)}}\left({ }_{\nu}^{(j)}{ }_{\nu}^{(j)} p^{\omega \omega}-\Gamma_{\tau \nu}^{(j)} p^{(j)}\right), \tag{4.3}
\end{align*}
$$

We shall call $R_{\mu \nu \rho}^{\because \ddot{p}^{\lambda}}$ the curvature tensor of our connection U and
 $\stackrel{(1)}{U}, \stackrel{(2)}{U}, \ldots \ldots, \stackrel{(r)}{U}$.
5. Special cases. When we put $r=1$, we get a connection in the general Finsler manifold. Let ${ }^{(1)}$ of x^{ν} be connected with that of $x^{\nu}+d x^{\nu}$,
 T. Hosokawa ${ }^{2}$) has studied. The connection of Berwald in the Finsler manifold $^{3)}$ is a more special one of this case, i.e. $\Gamma_{\lambda \mu}^{\nu}={\stackrel{(1)}{\Gamma_{\lambda \mu}}}^{\nu}$.

As the correspondence between line elements belonging to two consecutive points can be defined arbitrarily, we may put ${ }^{(6)}{ }_{\mu} p^{(i)}=0$,
 Berwald. Our connection contains that of Craig^{4}) as a special case too, in which case r is 2.

[^0]
[^0]: 1) This expression consists only formally, because ${ }^{(i)}{ }^{0}$ is not a vector field but a line element and $\stackrel{i}{(i)}_{\mu}^{(i)} p^{(i)}$ define a correspondence between two line elements belonging to a point x^{ν} and its consecutive point $x^{\nu}+d x^{\nu}$ respectively. Accordingly this expression does not give us the curvature tensor.
 2) T. Hosokawa: Science Reports, Tohoku Imp. University, series I, 19 (1930), p. 37-51.
 3) L. Berwald: Math. Zeitschrift, 25 (1926), S. 40-73.
 4) H. V. Craig: Trans. of Amer. Math. Soc., 33 (1931), p. 125-142.
