No. 10.]

161. Eine Bemerkung über den Normensatz relativ-Galoisscher Zahlkörper.

Von Tadao TANNAKA.

Mathematisches Institut, Tohoku Kaiserliche Universität, Sendai. (Comm. by M. FUJIWARA, M.I.A., Dec. 12, 1933.)

Der Normensatz im zyklischen Körper¹⁾ wurde neuerdings durch Brauer, Hasse und Noether²⁾ in äusserst schöner Formulierung folgendermassen verallgemeinert:

Jede überall zerfallende Algebra zerfällt schlechthin.

Ich möchte hier eine kleine Bemerkung über diesen Satz machen. Der Einfachheit halber sei die folgende Ausdrucksweise gestattet: Es sei K/k ein Galoisscher Körper, $\mathfrak P$ ein Primideal in K und $a_{S,T}$ ein Faktorensystem von K/k mit der Bedingung

$$a_{S_0, \ T_0}\!\!\equiv\!\! rac{c_{S_0}^{T_0}\!c_{T_0}}{c_{S_0T_0}}$$
 mod. $\mathfrak{P}^{
m P}$,

wobei S_0 , T_0 , alle Galoissubstitutionen der Zerlegungsgruppe für \mathfrak{P} durchlaufen, dann heissen wir " $a_{S,T}$ zerfällt mod. $\mathfrak{P}^{\mathfrak{p}}$ ", im Zeichen

$$(a_{S,T}) \sim (1) \mod \mathfrak{P}^{\mathsf{p}}$$
.

Dann gilt:

Satz 1. Es gibt ein (endliches) Ideal $\mathfrak{U} = \mathfrak{U}(K/k)$ in K derart, dass aus $(a_{S,T}) \sim (1) \mod \mathfrak{U}(\mathfrak{P})$ für jedes \mathfrak{P} , folgt schlechthin $(a_{S,T}) \sim (1)$.

Dies folgt aus den folgenden Sätzen 2 und 3 bei der Verknüpfung mit dem am Anfang genannten Normensatz.

Satz 2. Es sei $K^{\mathfrak{p}}/k_{\mathfrak{p}}$ relativ-Galoisscher Henselscher Körper mit der Gruppe $G = S + T + U + \cdots$, dann gibt es eine Potenz $\mathfrak{P}^{\mathfrak{p}}$ derart, dass aus $(a_{S,T}) \sim (1) \ mod. \, \mathfrak{P}^{\mathfrak{p}}$

folgt schlechthin $(a_{S,T}) \sim (1)$.

Die kleinste Potenz $\mathfrak{P}^{\mathfrak{p}}$ mit dieser Eigenschaft sei mit $\mathfrak{U}(\mathfrak{P}) = \mathfrak{U}(K^{\mathfrak{p}}/k_{\mathfrak{p}})$ bezeichnet.

Satz 3. Für zyklischen Körper $K^{\mathfrak{p}}/k_{\mathfrak{p}}$ stimmt $\mathfrak{U}(K^{\mathfrak{p}}/k_{\mathfrak{p}})$ mit dem Führer $\mathfrak{f}(K^{\mathfrak{p}}/k_{\mathfrak{p}})$ überein.

¹⁾ H. Hasse: Beweis eines Satzes und Wiederlegung einer Vermutung über das allgemeine Normenrestsymbol. Göttinger Nachr. (1931).

²⁾ R. Brauer, H. Hasse, E. Noether: Beweis eines Hauptsatzes in der Theorie der Algebren. Crelles Journal, **167** (1932).

Satz 3 ist fast trivial. Aus diesem folgt insbesondere, dass $\mathfrak{U}(K^{\mathfrak{p}}/k_{\mathfrak{p}})=1$ für unverzweigten Körper $K^{\mathfrak{p}}/k_{\mathfrak{p}}$, da solcher Körper bekanntlich zyklisch ist, also folgt auch die Endlichkeit der verschiedenen in $\mathfrak{U}(K/k)=\Pi\mathfrak{U}(\mathfrak{P})$ auftretenden Primideale.

Beweis des Satzes 2:

Es sei $n_{\mathfrak{p}} = [K^{\mathfrak{p}}/k_{\mathfrak{p}}]$ und ρ' eine genügend grosse natürliche Zahl, so dass für jedes überhaupt in $K^{\mathfrak{p}}$ existierende von 1 verschiedene $n_{\mathfrak{p}}$ -te Einheitswurzel ζ

(A)
$$\zeta \not\equiv 1 \mod \mathfrak{P}'$$

gilt. Man wähle dann ρ so gross, dass jedes a mit

$$a \equiv 1 \mod \mathbb{S}^p$$

eine g-te Potenz b^g wird, wobei $g = \varphi(\mathfrak{P}^p)n_{\mathfrak{P}}$ gesetzt ist.¹⁾ Dann ist

$$a=(b^{\varphi(\mathfrak{P}^{\rho\prime})})^{n\mathfrak{p}}=c^{n\mathfrak{p}}$$
,

$$c\equiv 1 \bmod \mathfrak{P}^{\mathsf{p}}$$
.

Ein Faktorensystem $a_{S,T}$ genüge der Relation

$$a_{S,T} \equiv 1 \mod \mathfrak{P}^{\mathfrak{p}}$$
,

so ist nach dem obigen

$$a_{S,T}=b_{S,T}^{n\mathfrak{p}}$$
, $b_{S,T}\equiv 1 \mod. \mathfrak{P}^{\mathfrak{p}}$,

also

$$b_{S,T}^{Un\mathfrak{p}} = \frac{b_{T,U}^{n\mathfrak{p}}b_{S,TU}^{n\mathfrak{p}}}{b_{S,TU}^{n\mathfrak{p}}}$$
 .

Dies ergibt nach der Bedingung (A)

$$b_{S, T}^{U} = \frac{b_{T, U} b_{S, TU}}{b_{ST, U}}$$
,

d.i. $b_{S,T}$ selbst bildet ein Faktorensystem. Daher ist

$$(a_{S, T}) \sim (b_{S, T})^{np} \sim (1)$$

wie behauptet.

Den genauen Wert von $\mathfrak{U}(K/k)$ zu bestimmen scheint mir von nicht geringem Interesse, es wäre aber vielleicht eine schwierige Aufgabe. Ich begnüge mich daher nur mit den folgenden rohen Resultaten.

Satz 4. Es sei wieder $K^{\mathfrak{p}}/k_{\mathfrak{p}}$ Galoissch und $K_0^{\mathfrak{p}}$ ein Galoisscher Zwischenkörper desselben, dann ist

$$\mathfrak{U}(K^{\mathfrak{p}}/k_{\mathfrak{p}}) \geq \mathfrak{U}(K_{\mathfrak{q}}^{\mathfrak{p}}/k_{\mathfrak{p}})$$
.

¹⁾ Dies ist in der Tat möglich. Vergleiche z.B. H. Hasse: Klassenkörpertheorie (Manuskript), Satz 121.

Beweis: Es sei g zu $K_0^{\mathfrak{p}}$ gehörige Untergruppe der Galoisschen Gruppe G von $K^{\mathfrak{p}}/k_{\mathfrak{p}}$, $G_0 = G/g$ die Gruppe von $K_0^{\mathfrak{p}}/k_{\mathfrak{p}}$, und a_{S_0, T_0} ein Faktorensystem von $K_0^{\mathfrak{p}}/k_{\mathfrak{p}}$ mit $a_{S_0, T_0} \equiv 1$ mod. $\mathfrak{U}(K^{\mathfrak{p}}/k_{\mathfrak{p}})$.

Nach Brauer gilt1)

$$(a_{S_0, T_0, G_0}) \sim (a_{S, T}, G)$$
,

wenn für alle Elemente σ , τ von g

$$a_{S, T} = a_{S_0^{\sigma}, T_0^{\tau}} = a_{S_0, T_0}$$

gesetzt. Aus der Kongruenzen

$$a_{S, T} \equiv 1 \mod \mathfrak{U}(K^{\mathfrak{p}}/k_{\mathfrak{p}})$$

folgt nach der Definition $(a_{S,T}) \sim (1)$, also $(a_{S_0,T_0}, G_0) \sim (1)$, was unsere Behauptung ergibt.

Satz 5. Wenn $K^{\mathfrak{p}}/k_{\mathfrak{p}}$ ein Abelscher Körper ist, dann ist $\mathfrak{U}(K^{\mathfrak{p}}/k_{\mathfrak{p}})$ durch $\mathfrak{f}(K^{\mathfrak{p}}/k_{\mathfrak{p}})$ teilbar.

Beweis: Dies folgt aus den Sätzen 3 und 4.

Satz 6. Wenn die Grade $n_{\mathfrak{p}}^{0} = [K_{0}^{\mathfrak{p}} : k_{\mathfrak{p}}]$ und $n_{\mathfrak{p}}' = [K'^{\mathfrak{p}} : k_{\mathfrak{p}}]$ relativ prim sind, so ist $\mathfrak{U} = \mathfrak{U}(K_{0}^{\mathfrak{p}}K'^{\mathfrak{p}}/k_{\mathfrak{p}}) = \operatorname{Max}. \{\mathfrak{U}(K_{0}^{\mathfrak{p}}/k^{\mathfrak{p}}), \mathfrak{U}(K'^{\mathfrak{p}}/k_{\mathfrak{p}})\} = \mathfrak{U}^{*}.$

Beweis: Nach Satz 4 ist es nur zu beweisen, dass $\mathfrak{U} \leq \mathfrak{U}^*$ ist. Die zu $K_0^{\mathfrak{p}}$ und $K'^{\mathfrak{p}}$ gehörigen Gruppen seien bzw. $G_0 = S_0 + T_0 + \cdots$ und $G' = S' + T' + \cdots$. Es sei ferner $a_{S, T}$ ein Faktorensystem von $K_0^{\mathfrak{p}} K'^{\mathfrak{p}} / k_{\mathfrak{p}}$ mit $a_{S, T} \equiv 1(\mathfrak{U}^*)$ und

$$\begin{split} b_{S',\,T'} & N_{K_0^{\mathfrak{p}}K'^{\mathfrak{p}}/K_0^{\mathfrak{p}}}(a_{S',\,T'}) \;, \\ c_{S_0,\,T_0} &= N_{K_0^{\mathfrak{p}}K'^{\mathfrak{p}}/K'^{\mathfrak{p}}}(a_{S_0,\,T_0}) \;, \end{split}$$

dann ist offenbar $b_{S',T'}\equiv c_{S_0,T_0}\equiv 1(\mathfrak{U}^*)$. Wenn man beachtet, dass nach einem Satz von Chevalley²⁾ die Relationen

$$(a_{S, T}, G)^{n_{\mathfrak{p}}^{0}} \sim (b_{S', T'}, G'),$$

 $(a_{S, T}, G)^{n'_{\mathfrak{p}}} \sim (c_{S_{0}, T_{0}}, G_{0})$

gelten, so folgt ohne weiteres $(a_{S,T}, G) \sim k_{\mathfrak{p}}$, w.z.b.w.

¹⁾ Vgl. z.B. K. Shoda: Bemerkungen über die Faktorensysteme einfacher hyperkomplexer Systeme. Japanese Journal of Math., 10 (1933).

²⁾ C. Chevalley: La théorie du symbole de restes normiques. Crelles Journal, **169** (1933), Hifssatz 5.