16. A New Concept of Integrals, II. ${ }^{1)}$

By Shin-ichi Izumi.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.i.a., Feb. 12, 1934.)
7. Let $f(x)$ be almost everywhere finite in (a, b). $\quad M^{*}(x)$ is called a major* function of $f(x)$ in (a, b), if it satisfies the following conditions:
$1^{\circ} . M^{*}(x)$ is (τ)-approximately continuous in the closed interval $[a, b],\left(\tau>\frac{1}{2}\right)$.
2°. $M^{*}(a)=0$.
3°. (a, b) is covered by a system of enumerable perfect sets $\left\{P_{i}\right\}$, except an enumerable set at most, such that
3. ${ }^{\circ}$ 1. $\underset{\tau}{A D} M_{i}(x)>-\infty$
with the possible exception of an enumerable set in P_{i},
3'. 2. $\quad \underset{\tau}{ } \underline{D} M_{i}(x) \geq f(x)$
with the possible exception of an enumerable set in P_{i}, where $M_{i}(x)$ is defined such that

$$
M_{i}(x)=M^{*}(x), \text { for } x \text { in } P_{i} \text { and for } x=a, x=b,
$$

and $M_{i}(x)$ is linear in the contiguous intervals of P_{i}.
4°. For any perfect subset Q_{i} of $P_{i}, N_{i}(x)$, defined as $M_{i}(x)$, taking Q_{i} instead of P_{i}, has the corresponding properties of $M_{i}(x)$.

Similarly, a minor* function $m^{*}(x)$ is defined. $\quad M^{*}(x)$ and $m^{*}(x)$ are called the associated* functions of $f(x)$ in (a, b).

Theorem 21. If $f(x)$ is defined in (a, b), and $M^{*}(x)$ and $m^{*}(x)$ are the associated* functions of $f(x)$, then $M^{*}(x)-m^{*}(x)$ is a positive nondecreasing function. In particular,

$$
M^{*}(b) \geqq m^{*}(b) .
$$

Suppose that $f(x)$ is defined and is almost everywhere finite in (a, b), and the associated ${ }^{*}$ functions $M^{*}(x)$ and $m^{*}(x)$ of $f(x)$ exist.

If we put

$$
I_{1}^{*}(b)=\text { lower bound of all } M^{*}(b),
$$

and

$$
I_{2}{ }^{*}(b)=\text { upper bound of all } m^{*}(b)
$$

then they are finite and

[^0]$$
I_{1}{ }^{*}(b) \geqq I_{2}^{*}(b) .
$$

If $I_{1}{ }^{*}(b)=I_{2}{ }^{*}(b)$, then $f(x)$ is said to be ($\left.\tau^{*}\right)$-integrable in (a, b), and the common value $I_{1}^{*}(b)$ is called the $\left(\tau^{*}\right)$-integral, and is denoted by

$$
\left(\tau^{*}\right) \int_{a}^{b} f(x) d x
$$

8. Omitting the obvious properties of $\left(\tau^{*}\right)$-integrals, we get the following theorems.

Theorem 22. If $f(x)$ is (τ)-integrable in (a, b), then $f(x)$ is $\left(\tau^{*}\right)$ integrable.

Theorem 23. If $\frac{1}{2}<\tau_{1}<\tau_{2} \leqq 1$ and $f(x)$ is $\left(\tau_{2}^{*}\right)$-integrable, then $f(x)$ is $\left(\tau_{1}{ }^{*}\right)$-integrable. Particularly, if $f(x)$ is (S)-integrable (in the Ridder's sense), then $f(x)$ is ($\tau_{1}{ }^{*}$)-integrable.

Theorem 24. If $f_{1}(x)$ and $f_{2}(x)$ are ($\left.\tau^{*}\right)$-integrable, then $f_{1}(x)+f_{2}(x)$ is $\left(\sigma^{*}\right)$-integrable, and

$$
\left(\sigma^{*}\right) \int_{a}^{b}\left\{f_{1}(x)+f_{2}(x)\right\} d x=\left(\tau^{*}\right) \int_{a}^{b} f_{1}(x) d x+\left(\tau^{*}\right) \int_{a}^{b} f_{2}(x) d x,
$$

where $\tau>\frac{3}{4}$ and $\sigma=2 \tau-1$.
Theorem 25. If $f_{1}(x)$ and $f_{2}(x)$ are $\left(\tau^{*}\right)$-integrable, and $f_{1}(x) \geqq f_{2}(x)$, then

$$
\left(\tau^{*}\right) \int_{a}^{b} f_{1}(x) d x \geqq\left(\tau^{*}\right) \int_{a}^{b} f_{2}(x) d x
$$

where $\tau>\frac{2}{3}$.
Theorem 26. The indefinite integral $F(x)=\left(\tau^{*}\right) \int_{a}^{x} f(t) d t(a \leqq x \leqq b)$ is a (τ)-approximately continuous function of x.

Theorem 27. If $F(x)=\left(\tau^{*}\right) \int_{a}^{x} f(t) d t$, then

$$
\underset{\tau}{A D F}(x)=f(x)
$$

for almost all x in (a, b).
Theorem 28. If $f(x)$ is non-negative in (a, b), then $f(x)$ is (τ^{*})integrable and integrable in Lebesgue's sense at the same time, having the same value.

Theorem 29. If $\left\{f_{n}(x)\right\}$ is a sequence of $\left(\tau^{*}\right)$-integrable functions, such that

1. $\lim _{n-\infty} f_{n}(x)$ exists and $=f(x)$,
2°. there is a $\left(\tau^{*}\right)$-integrable function $g(x)$
such that

$$
\left|f_{n}(x)\right| \leqq g(x) \quad(n=1,2,3, \ldots \ldots)
$$

then $f(x)$ is $\left(\tau^{*}\right)$-integrable, and

$$
\lim _{n=\infty}\left(\tau^{*}\right) \int_{a}^{b} f_{n}(x) d x=\left(\tau^{*}\right) \int_{a}^{b} f(x) d x
$$

[^0]: 1) In the first paper (this volume, No: $10, \mathrm{pp} .570-574$), I have to correct the following points: 1°. In Theorem 2 and 3 , read $\tau>\frac{1}{2}$ for $\tau>0 ; 2^{\circ}$. To the last of Theorem 6, add ($\tau>\frac{1}{2}$).
