16. A New Concept of Integrals, II.¹⁾

By Shin-ichi IZUMI.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Feb. 12, 1934.)

7. Let f(x) be almost everywhere finite in (a, b). $M^*(x)$ is called a major^{*} function of f(x) in (a, b), if it satisfies the following conditions:

1°. $M^*(x)$ is (τ) -approximately continuous in the closed interval $[a, b], (\tau > \frac{1}{2}).$

2°. $M^*(a) = 0$.

3°. (a, b) is covered by a system of enumerable perfect sets $\{P_i\}$, except an enumerable set at most, such that

3°. 1. $ADM_i(x) > -\infty$

with the possible exception of an enumerable set in P_i ,

3°. 2. $ADM_i(x) \ge f(x)$

with the possible exception of an enumerable set in P_i , where $M_i(x)$ is defined such that

 $M_i(x) = M^*(x)$, for x in P_i and for x = a, x = b,

and $M_i(x)$ is linear in the contiguous intervals of P_i .

4°. For any perfect subset Q_i of P_i , $N_i(x)$, defined as $M_i(x)$, taking Q_i instead of P_i , has the corresponding properties of $M_i(x)$.

Similarly, a minor^{*} function $m^*(x)$ is defined. $M^*(x)$ and $m^*(x)$ are called the associated^{*} functions of f(x) in (a, b).

Theorem 21. If f(x) is defined in (a, b), and $M^*(x)$ and $m^*(x)$ are the associated^{*} functions of f(x), then $M^*(x) - m^*(x)$ is a positive non-decreasing function. In particular,

$$M^{*}(b) \geq m^{*}(b)$$
.

Suppose that f(x) is defined and is almost everywhere finite in (a, b), and the associated^{*} functions $M^*(x)$ and $m^*(x)$ of f(x) exist.

If we put

 $I_1^*(b) = \text{lower bound of all } M^*(b)$,

and $I_2^*(b) = upper bound of all <math>m^*(b)$,

then they are finite and

¹⁾ In the first paper (this volume, No: 10, pp. 570-574), I have to correct the following points: 1°. In Theorem 2 and 3, read $\tau > \frac{1}{2}$ for $\tau > 0$; 2°. To the last of Theorem 6, add $(\tau > \frac{1}{2})$.

[Vol. 10,

 $I_1^*(b) \ge I_2^*(b)$.

If $I_1^*(b) = I_2^*(b)$, then f(x) is said to be (τ^*) -integrable in (a, b), and the common value $I_1^*(b)$ is called the (τ^*) -integral, and is denoted by $(\tau^*) \int_{a}^{b} f(x) dx$.

8. Omitting the obvious properties of (τ^*) -integrals, we get the following theorems.

Theorem 22. If f(x) is (τ) -integrable in (a, b), then f(x) is (τ^*) -integrable.

Theorem 23. If $\frac{1}{2} < \tau_1 < \tau_2 \leq 1$ and f(x) is (τ_2^*) -integrable, then f(x) is (τ_1^*) -integrable. Particularly, if f(x) is (S)-integrable (in the Ridder's sense), then f(x) is (τ_1^*) -integrable.

Theorem 24. If $f_1(x)$ and $f_2(x)$ are (τ^*) -integrable, then $f_1(x) + f_2(x)$ is (σ^*) -integrable, and

$$(\sigma^*) \int_a^b \{f_1(x) + f_2(x)\} dx = (\tau^*) \int_a^b f_1(x) dx + (\tau^*) \int_a^b f_2(x) dx ,$$

where $\tau > \frac{3}{4}$ and $\sigma = 2\tau - 1$.

Theorem 25. If $f_1(x)$ and $f_2(x)$ are (τ^*) -integrable, and $f_1(x) \ge f_2(x)$, then $(\tau^*) \int_a^b f_1(x) dx \ge (\tau^*) \int_a^b f_2(x) dx$,

where $\tau > \frac{2}{3}$.

Theorem 26. The indefinite integral $F(x) = (\tau^*) \int_a^x f(t) dt$ $(a \leq x \leq b)$ is a (τ) -approximately continuous function of x.

Theorem 27. If
$$F(x) = (\tau^*) \int_a^x f(t) dt$$
, then
 $ADF(x) = f(x)$

for almost all x in (a, b).

Theorem 28. If f(x) is non-negative in (a, b), then f(x) is (τ^*) -integrable and integrable in Lebesgue's sense at the same time, having the same value.

Theorem 29. If $\{f_n(x)\}\$ is a sequence of (τ^*) -integrable functions, such that

1°. $\lim f_n(x)$ exists and = f(x),

2°. there is a (τ^*) -integrable function g(x)

such that $|f_n(x)| \leq g(x)$ (n=1, 2, 3,),

then f(x) is (τ^*) -integrable, and

$$\lim_{n\to\infty}(\tau^*)\int_a^b f_n(x)dx=(\tau^*)\int_a^b f(x)dx.$$