153. Note on a Certain Multivalent Function.

By Tetuzi Itihara.

Second Higher School, Sendai.
(Comm. by T. Yosie, m.i.A., Nov. 12, 1934.)
In this note we prove a theorem on a certain multivalent function. Theorem. Let

$$
w=f(z)=\frac{1}{z^{k}}+a_{k} z^{k}+a_{k+1} z^{k+1}+a_{k+2} z^{k+2}+\cdots \cdots+a_{n} z^{n}+\cdots \cdots \quad\left(a_{k} \neq 0\right)
$$

be regular and k-valent in $0<|z|<1$, then

$$
k\left|a_{k}\right|^{2}+(k+1)\left|a_{k+1}\right|^{2}+(k+2)\left|a_{k+2}\right|^{2}+\cdots \cdots+n\left|a_{n}\right|^{2}+\cdots \cdots \leqq k
$$

Proof. We consider at first a circle $|z|=r \quad(0<r<1)$, then we may write

$$
\left|\sum_{n-k+1}^{\infty} a_{n} z^{n-k}\right|<\delta
$$

where δ denotes a certain positive constant. Therefore, if we write

$$
\begin{aligned}
& \zeta=\frac{1}{z^{k}}+a_{k} z^{k} \\
& |w-\zeta|<\delta|z|^{k}=\delta r^{k}
\end{aligned}
$$

and so

$$
\begin{aligned}
\left|w-2 \sqrt{a_{k}}\right|+\left|w+2 \sqrt{a_{k}}\right| & \leqq 2|w-\zeta|+\left|\zeta-2 \sqrt{a_{k}}\right|+\left|\zeta+2 \sqrt{a_{k}}\right| \\
& <2 \delta r^{k}+\left|\zeta-2 \sqrt{a_{k}}\right|+\left|\zeta+2 \sqrt{a_{k}}\right|
\end{aligned}
$$

Now, since

$$
\begin{aligned}
\left|\zeta-2 \sqrt{a_{k}}\right|+\left|\zeta+2 \sqrt{a_{k}}\right| & =\left|z^{\frac{k}{2}}-a_{k}{ }^{\frac{1}{2}} z^{\frac{k}{2}}\right|^{2}+\left|z^{-\frac{k}{2}}+a_{k}^{\frac{1}{2}} z^{\frac{k}{2}}\right|^{2} \\
& =2\left\{\left|z^{-\frac{k}{2}}\right|^{2}+\left|a_{k}{ }^{\frac{1}{2}} z^{\frac{k}{2}}\right|^{2}\right\} \\
& =2\left\{\frac{1}{r^{k}}+\left|a_{k}\right| r^{k}\right\},
\end{aligned}
$$

it follows that

$$
\begin{equation*}
\left|w-2 \sqrt{a_{k}}\right|+\left|w+2 \sqrt{a_{k}}\right|<2\left\{\frac{1}{r^{k}}+\left(\left|a_{k}\right|+\delta\right) r^{k}\right\} \tag{1}
\end{equation*}
$$

Thus the image of $|z|=r$ by $w=f(z)$ lies in the elliptic domain (1) on the w-plane. Let A denote its area, then

$$
\begin{aligned}
A & =\pi\left\{\frac{1}{r^{k}}+\left(\left|a_{k}\right|+\delta\right) r^{k}\right\} \sqrt{\left\{\frac{1}{r^{k}}+\left(\left|a_{k}\right|+\delta\right) r^{k}\right\}^{2}-4\left|a_{k}\right|} \\
& =\pi\left\{\frac{1}{r^{2 k}}-\left(\left|a_{k}\right|+\delta\right)^{2} r^{2 k}\right\} \sqrt{1+\frac{4 \delta}{Q^{2}}},
\end{aligned}
$$

where

$$
Q=\frac{1}{r^{k}}-\left(\left|a_{k}\right|+\delta\right) r^{k}
$$

It is easy to see that $Q>\frac{1}{2 r^{k}}$ by taking $\left|a_{k}\right|>\delta$ and

$$
0<r<\sqrt[2 k]{\frac{1}{4\left|a_{k}\right|}},
$$

and so

$$
\begin{aligned}
A & <\pi\left\{\frac{1}{r^{2 k}}-\left(\left|a_{k}\right|+\delta\right)^{2} r^{2 k}\right\} \sqrt{1+16 \delta r^{2 k}} \\
& <\pi\left\{\frac{1}{r^{2 k}}-\left(\left|a_{k}\right|+\delta\right)^{2} r^{2 k}\right\}\left(1+8 \delta r^{2 k}\right) \\
& <\frac{\pi}{r^{2 k}}\left(1+8 \delta r^{2 k}\right)=\pi\left(\frac{1}{r^{2 k}}+8 \delta\right) .
\end{aligned}
$$

We shall now assume that $0<r<R<1$, then the image of $|z|=R$ by $f(z)$ on the w-plane lies within the elliptic domain (1), since semiaxis of (1) increases without limit as $r \rightarrow 0$. Therefore, the image of $r \leqq|z| \leqq R$ lies also within (1), and has the area

$$
\pi\left\{k\left(\frac{1}{r^{2 k}}-\frac{1}{R^{2 k}}\right)+\sum_{n=k}^{\infty} n\left|a_{n}\right|^{2}\left(R^{2 n}-r^{2 n}\right)\right\} .
$$

It follows from the k-valency of $f(z)$ in $0<|z|<1$,

$$
\begin{gathered}
\pi\left\{k\left(\frac{1}{r^{2 k}}-\frac{1}{R^{2 k}}\right)+\sum_{n-k}^{\infty} n\left|a_{n}\right|^{2}\left(R^{2 n}-r^{2 n}\right)\right\}<k A<k \pi\left(\frac{1}{r^{2 k}}+8 \delta\right), \\
\therefore-\frac{k}{R^{2 k}}+\sum_{n=k}^{\infty} n\left|a_{n}\right|^{2}\left(R^{2 n}-r^{2 n}\right)<8 k \delta .
\end{gathered}
$$

Finally, by $r \rightarrow 0$, we have

$$
\sum_{n=k}^{\infty} n\left|a_{n}\right|^{2} R^{2 n} \leqq \frac{k}{R^{2 n}}+8 k \delta,
$$

and by $R \rightarrow 1, \delta \rightarrow 0$

$$
\sum_{n=k}^{\infty} n\left|a_{n}\right|^{2} \leqq k
$$

This proves the theorem.

